OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 710–723

Phase retrieval in in-line x-ray phase contrast imaging based on total variation minimization

Alexander Kostenko, K. Joost Batenburg, Heikki Suhonen, S. Erik Offerman, and Lucas J. van Vliet  »View Author Affiliations


Optics Express, Vol. 21, Issue 1, pp. 710-723 (2013)
http://dx.doi.org/10.1364/OE.21.000710


View Full Text Article

Acrobat PDF (1884 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

State-of-the-art techniques for phase retrieval in propagation based X-ray phase-contrast imaging are aiming to solve an underdetermined linear system of equations. They commonly employ Tikhonov regularization – an L2-norm regularized deconvolution scheme – despite some of its limitations. We present a novel approach to phase retrieval based on Total Variation (TV) minimization. We incorporated TV minimization for deconvolution in phase retrieval using a variety of the most common linear phase-contrast models. The results of our TV minimization was compared with Tikhonov regularized deconvolution on simulated as well as experimental data. The presented method was shown to deliver improved accuracy in reconstructions based on a single distance as well as multiple distance phase-contrast images corrupted by noise and hampered by errors due to nonlinear imaging effects.

© 2012 OSA

OCIS Codes
(100.3190) Image processing : Inverse problems
(100.5070) Image processing : Phase retrieval
(110.7440) Imaging systems : X-ray imaging

ToC Category:
Image Processing

History
Original Manuscript: September 10, 2012
Revised Manuscript: October 1, 2012
Manuscript Accepted: October 4, 2012
Published: January 7, 2013

Citation
Alexander Kostenko, K. Joost Batenburg, Heikki Suhonen, S. Erik Offerman, and Lucas J. van Vliet, "Phase retrieval in in-line x-ray phase contrast imaging based on total variation minimization," Opt. Express 21, 710-723 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-1-710


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. O. Coindreau, C. Mulat, C. Germain, J. Lachaud, and G. L. Vignoles, “Benefits of x-ray CMT for the modeling of C/C composites,” Adv. Eng. Mat.13, 178–185 (2011). [CrossRef]
  2. F. Cosmi, A. Bernasconi, and N. Sodini, “Phase contrast micro-tomography and morphological analysis of a short carbon fibre reinforced polyamide,” Compos. Sci. Technol.71, 23–30 (2011). [CrossRef]
  3. M. Herbig, A. King, P. Reischig, H. Proudhon, E. M. Lauridsen, J. Marrow, J. -Y. Buffire, and W. Ludwig, “3-D growth of a short fatigue crack within a polycrystalline microstructure studied using combined diffraction and phase-contrast x-ray tomography,” Acta Mater.59, 590–601 (2011). [CrossRef]
  4. A. Kostenko, H. Sharma, E. G. Dere, A. King, W. Ludwig, W. van Oel, S. Stallinga, L. J. van Vliet, and S. E. Offerman, “Three-dimensional morphology of cementite in steel studied by x-ray phase-contrast tomography,” Scr. Mater.67, 261–264 (2012). [CrossRef]
  5. T. Argunova, M. Gutkin, J. H. Je, E. Mokhov, S. Nagalyuk, S. Sergey, and Y. Hwu, “SR phase-contrast imaging to address the evolution of defects during SiC growth,” Phys. Status Solid. A Appl. Mat.208, 819–824 (2011). [CrossRef]
  6. J. Xu, A. W. Stevenson, D. Gao, M. Tykocinski, D. Lawrence, S. W. Wilkins, G. M. Clark, E. Saunders, and R. S. Cowan, “The role of radiographic phase-contrast imaging in the development of intracochlear electrode arrays,” Otology and Neur.22, 862–868 (2001). [CrossRef]
  7. P. Weiss, L. Obadia, D. Magne, X. Bourges, C. Rau, T. Weitkamp, I. Khairoun, J.M. Bouler, D. Chappard, O. Gauthier, and G. Daculsi, “Synchrotron x-ray microtomography (on a micron scale) provides three dimensional imaging representation of bone ingrowth in calcium phosphate biomaterials,” Biomat.24, 4591 (2003). [CrossRef]
  8. P. Coan, F. Gruener, C. Glaser, T. Schneider, A. Bravin, M. Reiser, and D. Habs, “Phase contrast medical imaging with compact x-ray sources at the Munich-centre for advance photonics,” Nucl. Instr. and Meth. Phys. Res. A608, S44–S46 (2009). [CrossRef]
  9. E. C. Ismaila, W. Kaabara, D. Garritya, O. Gundogdua, O. Bunkb, F. Pfeifferb, M. J. Farquharsond, and D. A. Bradleya, “X-ray phase contrast imaging of the bone-cartilage interface,” Appl. Rad. and Isot.68, 767–771 (2010). [CrossRef]
  10. Q. Tao, D. li, L. Zhang, and S. Luo, “Using x-ray in-line phase-contrast imaging for the investigation of nude mouse hepatic tumors,” PLoS ONE7, e39936, (2012). [CrossRef] [PubMed]
  11. A. A. Appel, J. C. Larson, S. Somo, Z. Zhong, P. P. Spicer, F. K. Kasper, A. B. Garson, A. M. Zysk, A. G. Mikos, M. A. Anastasio, and E. M. Brey, “Imaging of poly(α-hydroxy-ester) scaffolds with x-ray phase-contrast microcomputed tomography,” Tissue Eng. Part C18, (2012).
  12. P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: quantitative phase tomography with micrometer resolution using hard synchrotron radiation x-rays,” Appl. Phys. Lett.75, 2912–2914 (1999). [CrossRef]
  13. T.E. Gureyev, T.J. Davis, A. Pogany, S.C. Mayo, and S.W. Wilkins, “Optical phase retrieval by use of first Born- and Rytov-type approximations,” Appl. Opt.43, 2418–2430 (2004). [CrossRef] [PubMed]
  14. X. Wu and H. Liu, “A general theoretical formalism for x-ray phase contrast imaging,” J. of X-ray Sci. and Techn.11, 33–42 (2003).
  15. J. -P. Guigay, M. Langer, R. Boistel, and P. Cloetens, “A mixed contrast transfer and transport of intensity approach for phase retrieval in the Fresnel region,” Opt. Lett.32, 1617–1619 (2007). [CrossRef] [PubMed]
  16. M. Langer, F. Peyrin, P. Cloetens, and J. -P. Guigay, “Quantitative comparison of direct phase retrieval algorithms in in-line phase tomography,” Med. Phys.35, 4556 (2008). [CrossRef] [PubMed]
  17. D. Paganin, S. Mayo, T. Gureyev, P. Miller, and S. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc.206, 33 – 40 (2002). [CrossRef] [PubMed]
  18. L. Turner, B. Dhal, J. Hayes, A. Mancuso, K. Nugent, D. Paterson, R. Scholten, C. Tran, and A. Peele, “X-ray phase imaging: demonstration of extended conditions with homogeneous objects,” Opt. Express12, 2960–2965 (2004). [CrossRef] [PubMed]
  19. X. Wu and A. Yan, “Phase retrieval from one single phase contrast x-ray image,” Opt. Express17, 11187 (2009). [CrossRef] [PubMed]
  20. R. Hofmann, J. Moosmann, and T. Baumbach, “Criticality in single-distance phase retrieval,” Opt. Express19, 25881–25890 (2011). [CrossRef]
  21. M. Langer, P. Cloetens, and F. Peyrin, “Fourier-wavelet regularization of phase retrieval in x-ray in-line phase tomography,” J. Opt. Soc. Am. A26, 1876–1881 (2009). [CrossRef]
  22. L.I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D.60, 259–268 (1992). [CrossRef]
  23. A. Chambolle, “An algorithm for total variation minimization and applications,” J. Math. Imaging Vision20, 89–97 (2004). [CrossRef]
  24. E. Y. Sidky, M. A. Anastasio, and X. Pan, “Image reconstruction exploiting object sparsity in boundary-enhanced x-ray phase-contrast tomography,” Opt. Express18, 10404 (2010). [CrossRef] [PubMed]
  25. J. Dahl, P. C. Hansen, S. H. Jensen, and T. L. Jensen, “Algorithms and software for total variation image reconstruction via first-order methods,” Num. Alg.53, 67–92 (2010). [CrossRef]
  26. A. W. M. van Eekeren, K. Schutte, and L. J. van Vliet, “Multiframe super-resolution reconstruction of small moving objects,” IEEE Trans. Im. Proc.19, 2901–2912 (2010). [CrossRef]
  27. E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inform. Theory52, 489–509 (2006). [CrossRef]
  28. X. Bresson and T. F. Chan, “Fast dual minimization of the vectorial total variation norm and applications to color image processing,” Inverse Probl. and Imag.2, 455–484 (2008). [CrossRef]
  29. A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM J. Im. Sci.2, 183–202 (2009). [CrossRef]
  30. A. Beck and M. Teboulle, “Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems,” IEEE Trans. Im. Proc.18, 2419–2434 (2009). [CrossRef]
  31. T. Q. Pham, L. J. van Vliet, and K. Schutte, “Robust super-resolution by minimizing a gaussian-weighted l2 error norm,” J. Phys.: Conf.124, 012037 (2008). [CrossRef]
  32. R. Barrett, R. Baker, P. Cloetens, Y. Dabin, C. Morawe, H. Suhonen, R. Tucoulou, A. Vivo, and L. Zhang. “Dynamically-figured mirror system for high-energy nanofocusing at the ESRF, Proc. SPIE12, 813904 (2011). [CrossRef]
  33. R. Mokso, P. Cloetens, E. Maire, W. Ludwig, and J.-Y. Buffire, “Nanoscale zoom tomography with hard x-rays using Kirkpatrick-Baez optics, Appl. Phys. Lett.90, 144104 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited