OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 815–821

Label-free second harmonic and hyper Rayleigh scattering with high efficiency

Nikolaos Gomopoulos, Cornelis Lütgebaucks, Qinchao Sun, Carlos Macias-Romero, and Sylvie Roke  »View Author Affiliations

Optics Express, Vol. 21, Issue 1, pp. 815-821 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (923 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a method to perform hyper Rayleigh scattering from aqueous solutions and second harmonic scattering measurements from unlabeled interfaces of liposomes and nanoparticles in dilute solutions. The water and interfacial response can be measured on a millisecond timescale, thus opening up the possibility to measure label-free time dependent transport processes in biological (membrane) systems.

© 2013 OSA

OCIS Codes
(190.4350) Nonlinear optics : Nonlinear optics at surfaces
(240.3695) Optics at surfaces : Linear and nonlinear light scattering from surfaces

ToC Category:
Nonlinear Optics

Original Manuscript: October 10, 2012
Revised Manuscript: December 14, 2012
Manuscript Accepted: December 15, 2012
Published: January 8, 2013

Virtual Issues
Vol. 8, Iss. 2 Virtual Journal for Biomedical Optics

Nikolaos Gomopoulos, Cornelis Lütgebaucks, Qinchao Sun, Carlos Macias-Romero, and Sylvie Roke, "Label-free second harmonic and hyper Rayleigh scattering with high efficiency," Opt. Express 21, 815-821 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. E. Rothman, “Mechanisms of intracellular protein transport,” Nature372(6501), 55–63 (1994). [CrossRef] [PubMed]
  2. S. M. Butterfield and H. A. Lashuel, “Amyloidogenic Protein-Membrane Interactions: Mechanistic Insight from Model Systems,” Angew. Chem. Int. Ed. Engl.49(33), 5628–5654 (2010). [CrossRef] [PubMed]
  3. D. S. Peterka, H. Takahashi, and R. Yuste, “Imaging Voltage in Neurons,” Neuron69(1), 9–21 (2011). [CrossRef] [PubMed]
  4. T. F. Heinz, C. K. Chen, D. Ricard, and Y. Shen, “Spectroscopy of Molecular Monolayers by Resonant Second-Harmonic Generation,” Phys. Rev. Lett.48(7), 478–481 (1982). [CrossRef]
  5. S. Roke, “Nonlinear optical spectroscopy of soft matter interfaces,” ChemPhysChem10(9-10), 1380–1388 (2009). [CrossRef] [PubMed]
  6. R. W. Terhune, P. D. Maker, and C. M. Savage, “Measurements of nonlinear light scattering,” Phys. Rev. Lett.14(17), 681–684 (1965). [CrossRef]
  7. R. Bersohn, Y. H. Pao, and H. L. Frisch, “Double-Quantum Light Scattering by Molecules,” J. Chem. Phys.45(9), 3184–3198 (1966). [CrossRef]
  8. M. Kauranen and A. Persoons, “Theory of polarization measurements of second-order nonlinear light scattering,” J. Chem. Phys.104(10), 3445–3456 (1996). [CrossRef]
  9. D. P. Shelton, “Polarization and angle dependence for hyper-Rayleigh scattering from local and nonlocal modes of isotropic fluids,” J. Opt. Soc. Am. B17(12), 2032–2036 (2000). [CrossRef]
  10. D. P. Shelton, “Accurate hyper-Rayleigh scattering polarization measurements,” Rev. Sci. Instrum.82(11), 113103 (2011). [CrossRef] [PubMed]
  11. K. Clays, M. J. Therien, and G. Hennrich, “Hyper-Rayleigh scattering for solution phase structure determination,” Linear and Nonlinear Optics of Organic Materials Viii 7049 (2008).
  12. S. Roke and G. Gonella, “Nonlinear Light Scattering and Spectroscopy of Particles and Droplets in Liquids,” Annu. Rev. Phys. Chem.63(1), 353–378 (2012). [CrossRef] [PubMed]
  13. H. Wang, E. C. Y. Yan, E. Borguet, and K. B. Eisenthal, “Second harmonic generation from the surface of centrosymmetric particles in bulk solution,” Chem. Phys. Lett.259(1-2), 15–20 (1996). [CrossRef]
  14. K. B. Eisenthal, “Second harmonic spectroscopy of aqueous nano- and microparticle interfaces,” Chem. Rev.106(4), 1462–1477 (2006). [CrossRef] [PubMed]
  15. L. Schneider, H. J. Schmid, and W. Peukert, “Influence of particle size and concentration on the second-harmonic signal generated at colloidal surfaces,” Appl. Phys. B87(2), 333–339 (2007). [CrossRef]
  16. S. Roke, W. G. Roeterdink, J. E. G. J. Wijnhoven, A. V. Petukhov, A. W. Kleyn, and M. Bonn, “Vibrational sum frequency scattering from a submicron suspension,” Phys. Rev. Lett.91(25), 258302 (2003). [CrossRef] [PubMed]
  17. S. H. Jen, G. Gonella, and H. L. Dai, “The Effect of Particle Size in Second Harmonic Generation from the Surface of Spherical Colloidal Particles. I: Experimental Observations,” J. Phys. Chem. A113(16), 4758–4762 (2009). [CrossRef] [PubMed]
  18. J. I. Dadap, J. Shan, and T. F. Heinz, “Theory of optical second-harmonic generation from a sphere of centrosymmetric material: small-particle limit,” J. Opt. Soc. Am. B21(7), 1328–1347 (2004). [CrossRef]
  19. A. G. F. de Beer, S. Roke, and J. I. Dadap, “Theory of optical second-harmonic and sum-frequency scattering from arbitrarily shaped particles,” J. Opt. Soc. Am. B28(6), 1374–1384 (2011). [CrossRef]
  20. G. Gonella and H. L. Dai, “Determination of adsorption geometry on spherical particles from nonlinear Mie theory analysis of surface second harmonic generation,” Phys. Rev. B84(12), 121402 (2011). [CrossRef]
  21. H. Husu, R. Siikanen, J. Mäkitalo, J. Lehtolahti, J. Laukkanen, M. Kuittinen, and M. Kauranen, “Metamaterials with Tailored Nonlinear Optical Response,” Nano Lett.12(2), 673–677 (2012). [CrossRef] [PubMed]
  22. J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P. F. Brevet, “Sensing with Multipolar Second Harmonic Generation from Spherical Metallic Nanoparticles,” Nano Lett.12(3), 1697–1701 (2012). [CrossRef] [PubMed]
  23. Y. Liu, C. Y. Yan, X. L. Zhao, and K. B. Eisenthal, “Surface potential of charged liposomes determined by second harmonic generation,” Langmuir17(7), 2063–2066 (2001). [CrossRef]
  24. M. Subir, J. Liu, and K. B. Eisenthal, “Protonation at the Aqueous Interface of Polymer Nanoparticles with Second Harmonic Generation,” J. Phys. Chem. C112(40), 15809–15812 (2008). [CrossRef]
  25. B. Schürer, S. Wunderlich, C. Sauerbeck, U. Peschel, and W. Peukert, “Probing colloidal interfaces by angle-resolved second harmonic light scattering,” Phys. Rev. B82(24), 241404 (2010). [CrossRef]
  26. S. Roke, J. Buitenhuis, J. C. van Miltenburg, M. Bonn, and A. van Blaaderen, “Interface-solvent effects during colloidal phase transitions,” J. Phys. Condens. Matter17(45), S3469–S3479 (2005). [CrossRef]
  27. H. F. Wang, T. Troxler, A. G. Yeh, and H. L. Dai, “In Situ, Nonlinear Optical Probe of Surfactant Adsorption on the Surface of Microparticles in Colloids,” Langmuir16(6), 2475–2481 (2000). [CrossRef]
  28. H. M. Eckenrode and H. L. Dai, “Nonlinear optical probe of biopolymer adsorption on colloidal particle surface: poly-L-lysine on polystyrene sulfate microspheres,” Langmuir20(21), 9202–9209 (2004). [CrossRef] [PubMed]
  29. H. M. Eckenrode, S. H. Jen, J. Han, A. G. Yeh, and H. L. Dai, “Adsorption of a cationic dye molecule on polystyrene microspheres in colloids: Effect of surface charge and composition probed by second harmonic generation,” J. Phys. Chem. B109(10), 4646–4653 (2005). [CrossRef] [PubMed]
  30. J. I. Dadap, X. Hu, N. Russell, J. Ekerdt, J. Lowell, and M. Downer, “Analysis of second-harmonic generation by unamplified, high-repetition-rate, ultrashort laser pulses at Si(001) interfaces,” IEEE J. Sel. Top. Quantum Electron.1(4), 1145–1155 (1995). [CrossRef]
  31. Y. Wang, O. Zeiri, A. Neyman, F. Stellacci, and I. A. Weinstock, “Nucleation and Island Growth of Alkanethiolate Ligand Domains on Gold Nanoparticles,” ACS Nano6(1), 629–640 (2012). [CrossRef] [PubMed]
  32. D. P. Shelton, “Slow polarization relaxation in water observed by hyper-Rayleigh scattering,” Phys. Rev. B72(2), 020201 (2005). [CrossRef]
  33. L. Haber, S. J. J. Kwok, M. Semeraro, and K. B. Eisenthal, “Probing the colloidal gold nanoparticle/aqueous interface with second harmonic generation,” Chem. Phys. Lett.507(1-3), 11–14 (2011). [CrossRef]
  34. J. Liu, M. Subir, K. Nguyen, and K. B. Eisenthal, “Second Harmonic Studies of Ions Crossing Liposome Membranes in Real Time,” J. Phys. Chem. B112(48), 15263–15266 (2008). [CrossRef] [PubMed]
  35. Handbook of Biomedical Nonlinear Optical Microscopy (Oxford Univeristy Press, Oxford, 2008).
  36. K. Kuetemeyer, R. Rezgui, H. Lubatschowski, and A. Heisterkamp, “Influence of laser parameters and staining on femtosecond laser-based intracellular nanosurgery,” Biomed. Opt. Express1(2), 587–597 (2010). [CrossRef] [PubMed]
  37. D. O. Lapotko and E. Y. Lukianova, “Influence of Physiological Conditions on Laser Damage Thresholds for Blood, Heart, and Liver Cells,” Lasers Surg. Med.36(1), 13–21 (2005). [CrossRef] [PubMed]
  38. K. König, “Multiphoton microscopy in life sciences,” J. Microsc.200(2), 83–104 (2000). [CrossRef] [PubMed]
  39. A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-Laser-Induced Nanocavitation in Water: Implications for Optical Breakdown Threshold and Cell Surgery,” Phys. Rev. Lett.100(3), 038102 (2008). [CrossRef] [PubMed]
  40. D. J. Payne, R. A. Hopkins, B. G. Eilert, G. D. Noojin, D. J. Stolarski, R. J. Thomas, C. P. Cain, G. T. Hengst, P. K. Kennedy, T. R. Jost, and B. A. Rockwell, “Comparative Study of Laser Damage Threshold Energies in the Artificial Retina,” J. Biomed. Opt.4(3), 337–344 (1999). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited