OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 822–833

Two-photon excited fluorescence in the LYB:Eu monoclinic crystal: towards a new scheme of single-beam dual-voxel direct laser writing in crystals

Y. Petit, A. Royon, N. Marquestaut, M. Dussauze, A. Fargues, P. Veber, V. Jubera, T. Cardinal, and L. Canioni  »View Author Affiliations


Optics Express, Vol. 21, Issue 1, pp. 822-833 (2013)
http://dx.doi.org/10.1364/OE.21.000822


View Full Text Article

Enhanced HTML    Acrobat PDF (937 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on two-photon excited fluorescence in the oriented Eu3+-doped LYB monoclinic crystal under femtosecond laser tight focusing. Due to spatial walk-off, the two polarization modes of the incident femtosecond beam simultaneously provide the independent excitation of two distinct focuses, leading to a single-beam dual-voxel nonlinear excitation of fluorescence below material modification threshold. These observations emphasize on the anisotropy of both two-photon absorption as well as fluorescence emission. They demonstrate the localized control of the nonlinear energy deposit, thanks to the adjustment of both the input power and polarization, by properly balancing the injected energy in each voxel. Such approach should be considered for future direct laser writing of waveguides in propagation directions out of the dielectric axes, so as to optimally cope with the highly probable anisotropy of laser-induced material modification thresholds in these crystals. These results open new ways for further potential developments in direct laser writing as the simultaneous inscription of double-line structures for original waveguides processes.

© 2013 OSA

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(230.7370) Optical devices : Waveguides
(260.1180) Physical optics : Crystal optics
(260.1440) Physical optics : Birefringence
(260.5430) Physical optics : Polarization
(270.4180) Quantum optics : Multiphoton processes
(300.2530) Spectroscopy : Fluorescence, laser-induced
(050.6875) Diffraction and gratings : Three-dimensional fabrication

ToC Category:
Laser Microfabrication

History
Original Manuscript: September 11, 2012
Revised Manuscript: November 4, 2012
Manuscript Accepted: November 4, 2012
Published: January 8, 2013

Citation
Y. Petit, A. Royon, N. Marquestaut, M. Dussauze, A. Fargues, P. Veber, V. Jubera, T. Cardinal, and L. Canioni, "Two-photon excited fluorescence in the LYB:Eu monoclinic crystal: towards a new scheme of single-beam dual-voxel direct laser writing in crystals," Opt. Express 21, 822-833 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-1-822


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008). [CrossRef]
  2. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996). [CrossRef] [PubMed]
  3. J. Qiu, K. Miura, T. Suzuki, T. Mitsuyu, and K. Hirao, “Permanent photoreduction of Sm3+ to Sm2+ inside a sodium aluminoborate glass by an infrared femtosecond pulsed laser,” Appl. Phys. Lett.74(1), 10–12 (1999). [CrossRef]
  4. A. Royon, K. Bourhis, M. Bellec, G. Papon, B. Bousquet, Y. Deshayes, T. Cardinal, and L. Canioni, “Silver clusters embedded in glass as a perennial high capacity optical recording medium,” Adv. Mater. (Deerfield Beach Fla.)22(46), 5282–5286 (2010). [CrossRef] [PubMed]
  5. M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Vortex Dynamics in hcp Solid 4He,” J. Appl. Phys.108, 073533 (2010). [CrossRef]
  6. E. Brasselet, A. Royon, and L. Canioni, “Dense arrays of microscopic optical vortex generators from femtosecond direct laser writing of radial birefringence in glass,” Appl. Phys. Lett.100(18), 181901 (2012). [CrossRef]
  7. A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process.80(8), 1647–1652 (2005). [CrossRef]
  8. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses,” Phys. Rev. Lett.91(24), 247405 (2003). [CrossRef] [PubMed]
  9. C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett.30(14), 1867–1869 (2005). [CrossRef] [PubMed]
  10. J. Choi, M. Bellec, A. Royon, K. Bourhis, G. Papon, T. Cardinal, L. Canioni, and M. Richardson, “Three-dimensional direct femtosecond laser writing of second-order nonlinearities in glass,” Opt. Lett.37(6), 1029–1031 (2012). [CrossRef] [PubMed]
  11. Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, and B. Yu, “Space-selective precipitation of functional crystals in glass by using a high repetition rate femtosecond laser,” Chem. Phys. Lett.443(4-6), 253–257 (2007). [CrossRef]
  12. Y. Liu, B. Zhu, Y. Dai, X. Qiao, S. Ye, Y. Teng, Q. Guo, H. Ma, X. Fan, and J. Qiu, “Femtosecond laser writing of Er3+-doped CaF2 crystalline patterns in glass,” Opt. Lett.34(21), 3433–3435 (2009). [CrossRef] [PubMed]
  13. A. Royon, Y. Petit, G. Papon, M. Richardson, and L. Canioni, “Femtosecond laser induced photochemistry in materials tailored with photosensitive agents,” Opt. Mater. Express1(5), 866–882 (2011). [CrossRef]
  14. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009). [CrossRef]
  15. K. Kawamura, M. Hirano, T. Kurobori, D. Takamizu, T. Kamiya, and H. Hosono, “Femtosecond-laser-encoded distributed-feedback color center laser in lithium fluoride single crystals,” Appl. Phys. Lett.84(3), 311 (2004). [CrossRef]
  16. V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathé, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett.85(7), 1122 (2004). [CrossRef]
  17. F. M. Bain, A. A. Lagatsky, R. R. Thomson, N. D. Psaila, N. V. Kuleshov, A. K. Kar, W. Sibbett, and C. T. A. Brown, “Ultrafast laser inscribed Yb:KGd(WO4)2 and Yb:KY(WO4)2 channel waveguide lasers,” Opt. Express17(25), 22417–22422 (2009). [CrossRef] [PubMed]
  18. S. M. Eaton, C. A. Merchant, R. Iyer, A. J. Zilkie, A. S. Helmy, J. S. Aitchison, P. R. Herman, D. Kraemer, R. J. D. Miller, C. Hnatovsky, and R. S. Taylor, “Raman gain from waveguides inscribed in KGd(WO4)2 by high repetition rate femtosecond laser,” Appl. Phys. Lett.92(8), 081105 (2008). [CrossRef]
  19. J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett.89(8), 081108 (2006). [CrossRef]
  20. S. J. Beecher, R. R. Thomson, D. T. Reid, N. D. Psaila, M. Ebrahim-Zadeh, and A. K. Kar, “Strain field manipulation in ultrafast laser inscribed BiB3O6 optical waveguides for nonlinear applications,” Opt. Lett.36(23), 4548–4550 (2011). [CrossRef] [PubMed]
  21. T. Gorelik, M. Will, S. Nolte, A. Tuennermann, and U. Glatzel, “Transmission electron microscopy studies of femtosecond laser induced modifications in quartz,” Appl. Phys., A Mater. Sci. Process.76(3), 309–311 (2003). [CrossRef]
  22. R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett.88(11), 111109 (2006). [CrossRef]
  23. W. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nature2, 99–104 (2008).
  24. L. Yang, C. Wang, Y. Dong, N. Da, X. Hu, D. Chen, and J. Qiu, “Three-photon-excited upconversion luminescence of YVO4 single crystal by infrared femtosecond laser irradiation,” Opt. Express13(25), 10157–10162 (2005). [CrossRef] [PubMed]
  25. A. Ródenas, A. H. Nejadmalayeri, D. Jaque, and P. Herman, “Confocal Raman imaging of optical waveguides in LiNbO3 fabricated by ultrafast high-repetition rate laser-writing,” Opt. Express16(18), 13979–13989 (2008). [CrossRef] [PubMed]
  26. Y. Petit, B. Boulanger, P. Segonds, C. Félix, B. Ménaert, J. Zaccaro, and G. Aka, “Absorption and fluorescence anisotropies of monoclinic crystals: the case of Nd:YCOB,” Opt. Express16(11), 7997–8002 (2008). [CrossRef] [PubMed]
  27. S. Joly, Y. Petit, B. Boulanger, P. Segonds, C. Félix, B. Ménaert, and G. Aka, “Singular topology of optical absorption in biaxial crystals,” Opt. Express17(22), 19868–19873 (2009). [CrossRef] [PubMed]
  28. S. Joly, P. Segonds, B. Boulanger, Y. Petit, A. P. Revellez, C. Félix, and B. Ménaert, “Rotation of the absorption frame as a function of the electronic transition in the Nd3+:YCa₄O(BO₃)₃ monoclinic crystal,” Opt. Express18(18), 19169–19174 (2010). [CrossRef] [PubMed]
  29. J. Hölsa and M. Leskelä, “Optical study of Eu3+ luminescence in lithium rare earth borates, Li6RE(BO3)3; RE = Gd, Y,” J. Lumin.48-49, 497–500 (1991). [CrossRef]
  30. V. Jubera, J.-P. Chaminade, A. Garcia, F. Guillen, and C. Fouassier, “Luminescent properties of Eu3+-activated lithium rare earth borates and oxyborates,” J. Lumin.101(1-2), 1–10 (2003). [CrossRef]
  31. G. K. Abdullaev and K. S. Mamedov, Sov. Phys. Crystallogr.22(2), 220–222 (1997).
  32. M. Born and E. Wolf, Principles of Optics (Oxford, 1965).
  33. H. Hellwig, J. Liebertz, and L. Bohaty, “Linear optical properties of the monoclinic bismuth BiB3O6,” J. Appl. Phys.88(1), 240 (2000). [CrossRef]
  34. P. Segonds, V. Jubera, J. Debray, and B. Ménaert, private communication.
  35. B. Boulanger and J. Zyss, International Tables for Crystallography Vol. D: A. Authier Ed., International Union of Crystallography, (Kluwer, Academic Publisher, 2006), chapt. 1.7: nonlinear optical properties.
  36. P. Segonds, B. Boulanger, J. P. Fève, B. Ménaert, J. Zaccaro, G. Aka, and D. Pelenc, “Linear and nonlinear optical properties of the monoclinic Ca4YO(BO3)3 crystal,” J. Opt. Soc. Am. B21(4), 765–769 (2004). [CrossRef]
  37. M. Chavoutier, V. Jubera, P. Veber, M. Velazquez, O. Viraphong, J. Hejtmanek, R. Decourt, J. Debray, B. Menaert, P. Segonds, F. Adamietz, V. Rodriguez, I. Manek-Hönninger, A. Fargues, D. Descamps, and A. Garcia, “Thermal, optical and spectroscopic characterizations of borate laser crystals,” J. Solid State Chem.184(2), 441–446 (2011). [CrossRef]
  38. P. Segonds, B. Boulanger, L. Ferrier, B. Ménaert, and J. Zaccaro, “Refractive indices determination of a small-size nonlinear biaxial crystal by use of double-refraction measurements with a laser beam,” J. Opt. Soc. Amer. B.23(5), 852–856 (2006). [CrossRef]
  39. R. W. Boyd, Nonlinear Optics (Academic Press ELSEVIER, San Diego, 2008).
  40. S. Brasselet, V. Le Floc’h, F. Treussart, J.-F. Roch, J. Zyss, E. Botzung-Appert, and A. Ibanez, “In situ diagnostics of the crystalline nature of single organic nanocrystals by nonlinear microscopy,” Phys. Rev. Lett.92(20), 207401 (2004). [CrossRef] [PubMed]
  41. Y. Petit, S. Joly, P. Segonds, and B. Boulanger, “Recent advances in monoclinic crystal optics,” Laser Phys. Rev.: Invited Review Article (to appear in press).
  42. R. Cattoor, I. Manek-Hönninger, J.-Ch. Delagnes, Y. Petit, B. Bousquet, V. Jubera, A. Fargues, Ph. Veber, M. Velazquez, A. Garcia, and L. Canioni, “Potential of the Eu:LYB crystal as a laser material for DPSS lasers emitting at 613 nm,” Proc. SPIE8235, 82351A, 82351A–7 (2012). [CrossRef]
  43. J.-P. Fève, B. Boulanger, B. Ménaert, and O. Pacaud, “Continuous tuning of a microlaser-pumped optical parametric generator by use of a cylindrical periodically poled lithium niobate crystal,” Opt. Lett.28(12), 1028–1030 (2003). [CrossRef] [PubMed]
  44. Y. Petit, P. Segonds, B. Boulanger, and T. Taira, “Angular Quasi-Phase Matching,” Phys. Rev. A76(6), 063817 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited