OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 846–854

Enhancement of orange-yellow electroluminescence extraction from SiNx light-emitting devices by silver nanostructures

Feng Wang, Dongsheng Li, Deren Yang, and Duanlin Que  »View Author Affiliations


Optics Express, Vol. 21, Issue 1, pp. 846-854 (2013)
http://dx.doi.org/10.1364/OE.21.000846


View Full Text Article

Enhanced HTML    Acrobat PDF (1923 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A multilayer structure of ITO/SiNx/Ag/p/p+-Si/Au was fabricated to improve the extraction of the orange-yellow electroluminescence from SiNx-based light-emitting devices (LEDs), and an about 5 times enhancement of external quantum efficiency (EQE) was obtained. This improved light-extraction is mainly originated from the increase of root-mean-square roughness of ITO electrode and reflectivity at longer wavelength via the addition of elongated Ag nanostructures. For the structure with the dipolar resonance peak of Ag nanostructures far from the emission wavelength of SiNx matrix, the increased surface roughness of ITO electrode has a dominant effect on the improvement of the light-extraction. Moreover, the decrease of on-series resistance by the addition of Ag nanostructures due to its enhanced local electrical fields also has a benignant contribution to the improved EQE. Our work may provide a promising approach to improve the EQE of LEDs, which is not limited to SiNx matrix.

© 2013 OSA

OCIS Codes
(160.3130) Materials : Integrated optics materials
(230.2090) Optical devices : Electro-optical devices
(240.6680) Optics at surfaces : Surface plasmons
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:
Optical Devices

History
Original Manuscript: November 12, 2012
Revised Manuscript: December 23, 2012
Manuscript Accepted: December 24, 2012
Published: January 8, 2013

Citation
Feng Wang, Dongsheng Li, Deren Yang, and Duanlin Que, "Enhancement of orange-yellow electroluminescence extraction from SiNx light-emitting devices by silver nanostructures," Opt. Express 21, 846-854 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-1-846


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature408(6811), 440–444 (2000). [CrossRef] [PubMed]
  2. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics4(8), 495–497 (2010). [CrossRef]
  3. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics4(8), 535–544 (2010). [CrossRef]
  4. M. Paniccia, “Integrating silicon photonics,” Nat. Photonics4(8), 498–499 (2010). [CrossRef]
  5. N.-M. Park, C.-J. Choi, T.-Y. Seong, and S.-J. Park, “Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride,” Phys. Rev. Lett.86(7), 1355–1357 (2001). [CrossRef] [PubMed]
  6. R. J. Walters, G. I. Bourianoff, and H. A. Atwater, “Field-effect electroluminescence in silicon nanocrystals,” Nat. Mater.4(2), 143–146 (2005). [CrossRef] [PubMed]
  7. A. Anopchenko, A. Marconi, M. Wang, G. Pucker, P. Bellutti, and L. Pavesi, “Graded-size Si quantum dot ensembles for efficient light-emitting diodes,” Appl. Phys. Lett.99(18), 181108 (2011). [CrossRef]
  8. M. Wang, D. Yang, D. Li, Z. Yuan, and D. Que, “Correlation between luminescence and structural evolution of Si-rich silicon oxide film annealed at different temperatures,” J. Appl. Phys.101(10), 103504 (2007). [CrossRef]
  9. Y. Berencén, O. Jambois, J. M. Ramírez, J. M. Rebled, S. Estradé, F. Peiró, C. Domínguez, J. A. Rodríguez, and B. Garrido, “Blue-green to near-IR switching electroluminescence from Si-rich silicon oxide/nitride bilayer structures,” Opt. Lett.36(14), 2617–2619 (2011). [CrossRef] [PubMed]
  10. S. Minissale, S. Yerci, and L. Dal Negro, “Nonlinear optical properties of low temperature annealed silicon-rich oxide and silicon-rich nitride materials for silicon photonics,” Appl. Phys. Lett.100(2), 021109 (2012). [CrossRef]
  11. M. Wang, D. Li, Z. Yuan, D. Yang, and D. Que, “Photoluminescence of Si-rich silicon nitride: Defect-related states and silicon nanoclusters,” Appl. Phys. Lett.90(13), 131903 (2007). [CrossRef]
  12. M. Wang, J. Huang, Z. Yuan, A. Anopchenko, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNx film. II. Defect states electroluminescence,” J. Appl. Phys.104(8), 083505 (2008). [CrossRef]
  13. Z. H. Cen, T. P. Chen, Z. Liu, Y. Liu, L. Ding, M. Yang, J. I. Wong, S. F. Yu, and W. P. Goh, “Electrically tunable white-color electroluminescence from Si-implanted silicon nitride thin film,” Opt. Express18(19), 20439–20444 (2010). [CrossRef] [PubMed]
  14. F. Iacona, D. Pacifici, A. Irrera, M. Miritello, G. Franzò, F. Priolo, D. Sanfilippo, G. Di Stefano, and P. G. Fallica, “Electroluminescence at 1.54 µm in Er-doped Si nanocluster-based devices,” Appl. Phys. Lett.81(17), 3242–3244 (2002). [CrossRef]
  15. D. Li, X. Zhang, L. Jin, and D. Yang, “Structure and luminescence evolution of annealed Europium-doped silicon oxides films,” Opt. Express18(26), 27191–27196 (2010). [CrossRef] [PubMed]
  16. N. N. Ha, S. Cueff, K. Dohnalová, M. T. Trinh, C. Labbé, R. Rizk, I. N. Yassievich, and T. Gregorkiewicz, “Photon cutting for excitation of Er3+ ions in SiO2 sensitized by Si quantum dots,” Phys. Rev. B84(24), 241308 (2011). [CrossRef]
  17. M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011). [CrossRef] [PubMed]
  18. F. Wang, D. Li, D. Yang, and D. Que, “Enhancement of light-extraction efficiency of SiNx light emitting devices through a rough Ag island film,” Appl. Phys. Lett.100(3), 031113 (2012). [CrossRef]
  19. C.-D. Lin, C.-H. Cheng, Y.-H. Lin, C.-L. Wu, Y.-H. Pai, and G.-R. Lin, “Comparing retention and recombination of electrically injected carriers in Si quantum dots embedded in Si-rich SiNx films,” Appl. Phys. Lett.99(24), 243501 (2011). [CrossRef]
  20. W. L. Barnes, “Light-emitting devices: turning the tables on surface plasmons,” Nat. Mater.3(9), 588–589 (2004). [CrossRef] [PubMed]
  21. M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)20(7), 1253–1257 (2008). [CrossRef]
  22. C. Huh, C.-J. Choi, W. Kim, B. K. Kim, B.-J. Park, E.-H. Jang, S.-H. Kim, and G. Y. Sung, “Enhancement in light emission efficiency of Si nanocrystal light-emitting diodes by a surface plasmon coupling,” Appl. Phys. Lett.100(18), 181108 (2012). [CrossRef]
  23. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004). [CrossRef] [PubMed]
  24. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008). [CrossRef]
  25. F. Wang, M. Wang, D. Li, and D. Yang, “Localized surface plasmon resonance enhanced photoluminescence from SiNx with different N/Si ratios,” Opt. Mater. Express2(10), 1437–1448 (2012). [CrossRef]
  26. D. P. Perez, Silver Nanoparticles (In-Tech, Vukovar: Croatia, 2010), pp. 93–119.
  27. C. Noguez, “Surface plasmons on metal nanoparticles: The influence of shape and physical environment,” J. Phys. Chem. C111(10), 3806–3819 (2007). [CrossRef]
  28. Y. Zhang, Z. Ouyang, N. Stokes, B. Jia, Z. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett.100(15), 151101 (2012). [CrossRef]
  29. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).
  30. P. Cheng, D. Li, M. Xie, D. Yang, and J. Bao, “Enhancing the photoluminescence intensity of silicon-rich nitride film by localized surface plasmon enhanced photo-excitation,” Opt. Commun.285(7), 1864–1867 (2012). [CrossRef]
  31. A. I. Zhmakin, “Enhancement of light extraction from light emitting diodes,” Phys. Rep.498(4–5), 189–241 (2011). [CrossRef]
  32. T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells93(11), 1978–1985 (2009). [CrossRef]
  33. H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett.73(26), 3815–3817 (1998). [CrossRef]
  34. N. C. Dyck, R. C. Denomme, and P. M. Nieva, “Effective medium properties of arbitrary nanoparticle shapes in a localized surface plasmon resonance sensing layer,” J. Phys. Chem. C115(31), 15225–15233 (2011). [CrossRef]
  35. D. Li, F. Wang, D. Yang, and D. Que, “Electrically tunable electroluminescence from SiNx-based light-emitting devices,” Opt. Express20(16), 17359–17366 (2012). [CrossRef] [PubMed]
  36. B.-J. Ahn, T.-S. Kim, Y. Dong, M.-T. Hong, J.-H. Song, J.-H. Song, H.-K. Yuh, S.-C. Choi, D.-K. Bae, and Y. Moon, “Experimental determination of current spill-over and its effect on the efficiency droop in InGaN/GaN blue-light-emitting-diodes,” Appl. Phys. Lett.100(3), 031905 (2012). [CrossRef]
  37. D. K. Schroder, Semiconductor Material and Device Characterization (Wiley, 1990), pp. 147–149.
  38. A. Marconi, A. Anopchenko, G. Pucker, and L. Pavesi, “Power efficiency estimation of silicon nanocrystals based light emitting devices in alternating current regime,” Appl. Phys. Lett.98(20), 201103 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited