OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 968–973

High performance terahertz quantum cascade laser sources based on intracavity difference frequency generation

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi  »View Author Affiliations


Optics Express, Vol. 21, Issue 1, pp. 968-973 (2013)
http://dx.doi.org/10.1364/OE.21.000968


View Full Text Article

Enhanced HTML    Acrobat PDF (991 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate high power, room temperature, single-mode THz emissions based on intracavity difference frequency generation from mid-infrared quantum cascade lasers. Dual active regions both featuring giant nonlinear susceptibilities are used to enhance the THz power and conversion efficiency. The THz frequency is lithographically tuned by integrated dual-period distributed feedback gratings with different grating periods. Single mode emissions from 3.3 to 4.6 THz with side-mode suppression ratio and output power up to 40 dB and 65 µW are obtained, with a narrow linewidth of 5 GHz.

© 2013 OSA

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(190.4223) Nonlinear optics : Nonlinear wave mixing
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: November 7, 2012
Revised Manuscript: December 8, 2012
Manuscript Accepted: December 10, 2012
Published: January 9, 2013

Citation
Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, "High performance terahertz quantum cascade laser sources based on intracavity difference frequency generation," Opt. Express 21, 968-973 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-1-968


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater.1(1), 26–33 (2002). [CrossRef] [PubMed]
  2. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1(2), 97–105 (2007). [CrossRef]
  3. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417(6885), 156–159 (2002). [CrossRef] [PubMed]
  4. S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express20(4), 3866–3876 (2012). [CrossRef] [PubMed]
  5. M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett.92(20), 201101 (2008). [CrossRef]
  6. Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Room temperature single-mode terahertz sources based on intracavity difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett.99(13), 131106 (2011). [CrossRef]
  7. K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett.100(25), 251104 (2012). [CrossRef]
  8. M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics1(5), 288–292 (2007). [CrossRef]
  9. Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett.98(18), 181106 (2011). [CrossRef]
  10. M. Geiser, C. Pflügl, A. Belyanin, Q. J. Wang, N. Yu, T. Edamura, M. Yamanishi, H. Kan, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Gain competition in dual wavelength quantum cascade lasers,” Opt. Express18(10), 9900–9908 (2010). [CrossRef] [PubMed]
  11. S. Slivken, A. Evans, W. Zhang, and M. Razeghi, “High-power, continuous-operation intersubband laser for wavelengths greater than 10 μm,” Appl. Phys. Lett.90(15), 151115 (2007). [CrossRef]
  12. P. K. Tien, R. Ulrich, and R. J. Martin, “Optical second harmonic generation in form of coherent Čerenkov radiation from a thin-film waveguide,” Appl. Phys. Lett.17(10), 447–450 (1970). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited