OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 12249–12259

Electromagnetically induced grating in asymmetric quantum wells via Fano interference

Fengxue Zhou, Yihong Qi, Hui Sun, Dijun Chen, Jie Yang, Yueping Niu, and Shangqing Gong  »View Author Affiliations


Optics Express, Vol. 21, Issue 10, pp. 12249-12259 (2013)
http://dx.doi.org/10.1364/OE.21.012249


View Full Text Article

Enhanced HTML    Acrobat PDF (1396 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a scheme for obtaining an electromagnetically induced grating in an asymmetric semiconductor quantum well (QW) structure via Fano interference. In our structure, owing to Fano interference, the diffraction intensity of the grating, especially the first-order diffraction, can be significantly enhanced. The diffraction efficiency of the grating can be controlled efficiently by tuning the control field intensity, the interaction length, the coupling strength of tunneling, etc. This investigation may be used to develop novel photonic devices in semiconductor QW systems.

© 2013 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(270.1670) Quantum optics : Coherent optical effects
(160.4236) Materials : Nanomaterials

ToC Category:
Diffraction and Gratings

History
Original Manuscript: April 16, 2013
Revised Manuscript: April 27, 2013
Manuscript Accepted: April 27, 2013
Published: May 10, 2013

Citation
Fengxue Zhou, Yihong Qi, Hui Sun, Dijun Chen, Jie Yang, Yueping Niu, and Shangqing Gong, "Electromagnetically induced grating in asymmetric quantum wells via Fano interference," Opt. Express 21, 12249-12259 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-10-12249


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Y. Ling, Y. Q. Li, and M. Xiao, “Electromagnetically induced grating: Homogeneously broadened medium,” Phys. Rev. A57, 1338–1344 (1998). [CrossRef]
  2. M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A59, 4773–4776 (1999). [CrossRef]
  3. J. Tabosa, A. Lezama, and G. Cardoso, “Transient bragg diffraction by a transferred population grating: application for cold atoms velocimetry,” Opt. Commun.165, 59–64 (1999). [CrossRef]
  4. G. C. Cardoso and J. W. R. Tabosa, “Electromagnetically induced gratings in a degenerate open two-level system,” Phys. Rev. A65, 033803 (2002). [CrossRef]
  5. A. W. Brown and M. Xiao, “All-optical switching and routing based on an electromagnetically induced absorption grating,” Opt. Lett.30, 699–701 (2005). [CrossRef] [PubMed]
  6. A. W. Brown and M. Xiao, “Frequency detuning and power dependence of reflection from an electromagnetically induced absorption grating,” J. Mod. Opt.52, 2365–2371 (2005). [CrossRef]
  7. P. W. Zhai, X. M. Su, and J. Y. Gao, “Optical bistability in electromagnetically induced grating,” Phys. Lett. A289, 27–33 (2001). [CrossRef]
  8. L. Zhao, W. H. Duan, and S. F. Yelin, “All-optical beam control with high speed using image-induced blazed gratings in coherent media,” Phys. Rev. A82, 013809 (2010). [CrossRef]
  9. J. M. Wen, Y. H. Zhai, S. W. Du, and M. Xiao, “Engineering biphoton wave packets with an electromagnetically induced grating,” Phys. Rev. A82, 043814 (2010). [CrossRef]
  10. B. K. Dutta and P. K. Mahapatra, “Electromagnetically induced grating in a three-level -type system driven by a strong standing wave pump and weak probe fields,” J. Phys. B39, 1145 (2006). [CrossRef]
  11. Z. H. Xiao, S. G. Shin, and K. Kim, “An electromagnetically induced grating by microwave modulation,” J. Phys. B43, 161004 (2010). [CrossRef]
  12. L. E. E. de Araujo, “Electromagnetically induced phase grating,” Opt. Lett.35, 977–979 (2010). [CrossRef] [PubMed]
  13. S. A. de Carvalho and L. E. E. de Araujo, “Electromagnetically-induced phase grating: A coupled-wave theory analysis,” Opt. Express19, 1936–1944 (2011). [CrossRef] [PubMed]
  14. L. Zhao, W. H. Duan, and S. F. Yelin, “Generation of tunable-volume transmission-holographic gratings at low light levels,” Phys. Rev. A84, 033806 (2011). [CrossRef]
  15. N. Ba, X. Y. Wu, X. J. Liu, S. Q. Zhang, and J. Wang, “Electromagnetically induced grating in an atomic system with a static magnetic field,” Opt. Commun.285, 3792–3797 (2012). [CrossRef]
  16. R. G. Wan, J. Kou, L. Jiang, Y. Jiang, and J. Y. Gao, “Electromagnetically induced grating via enhanced nonlinear modulation by spontaneously generated coherence,” Phys. Rev. A83, 033824 (2011). [CrossRef]
  17. B. Xie, X. Cai, and Z. H. Xiao, “Electromagnetically induced phase grating controlled by spontaneous emission,” Opt. Commun.285, 133–135 (2012). [CrossRef]
  18. S. Menon and G. S. Agarwal, “Effects of spontaneously generated coherence on the pump-probe response of a λ system,” Phys. Rev. A57, 4014–4018 (1998). [CrossRef]
  19. J. H. Wu and J. Y. Gao, “Phase control of light amplification without inversion in a λ system with spontaneously generated coherence,” Phys. Rev. A65, 063807 (2002). [CrossRef]
  20. W. H. Xu, J. H. Wu, and J. Y. Gao, “Effects of spontaneously generated coherence on transient process in a λ system,” Phys. Rev. A66, 063812 (2002). [CrossRef]
  21. Y. Niu and S. Gong, “Enhancing kerr nonlinearity via spontaneously generated coherence,” Phys. Rev. A73, 053811 (2006). [CrossRef]
  22. Z. H. Xiao, L. Zheng, and H. Lin, “Photoinduced diffraction grating in hybrid artificial molecule,” Opt. Express20, 1219–1229 (2012). [CrossRef] [PubMed]
  23. H. Schmidt and A. Imamoğlu, “Nonlinear optical devices based on a transparency in semiconductor intersubband transitions,” Opt. Commun.131, 333–338 (1996). [CrossRef]
  24. H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoğlu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett.70, 3455–3457 (1997). [CrossRef]
  25. X. M. Su and J. Y. Gao, “Optical switching based on transparency in a semiconductor double-quantum well,” Phys. Lett. A264, 346–349 (2000). [CrossRef]
  26. J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable fano interference,” Phys. Rev. Lett.95, 057401 (2005). [CrossRef] [PubMed]
  27. H. Sun, S. Gong, Y. Niu, S. Jin, R. Li, and Z. Xu, “Enhancing kerr nonlinearity in an asymmetric double quantum well via fano interference,” Phys. Rev. B74, 155314 (2006). [CrossRef]
  28. J. H. Li, “Controllable optical bistability in a four-subband semiconductor quantum well system,” Phys. Rev. B75, 155329 (2007). [CrossRef]
  29. Y. Peng, Y. Niu, Y. Qi, H. Yao, and S. Gong, “Optical precursors with tunneling-induced transparency in asymmetric quantum wells,” Phys. Rev. A83, 013812 (2011). [CrossRef]
  30. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124, 1866–1878 (1961). [CrossRef]
  31. J. Faist, C. Sirtori, F. Capasso, S.-N. G. Chu, L. N. Pfeiffer, and K. W. West, “Tunable fano interference in intersubband absorption,” Opt. Lett.21, 985–987 (1996). [CrossRef] [PubMed]
  32. A. Imamoḡlu and R. J. Ram, “Semiconductor lasers without population inversion,” Opt. Lett.19, 1744–1746 (1994). [CrossRef]
  33. D. Ahn and S. L. Chuang, “Exact calculations of quasibound states of an isolated quantum well with uniform electric field: Quantum-well stark resonance,” Phys. Rev. B34, 9034–9037 (1986). [CrossRef]
  34. H. Sun, Y. Niu, R. Li, S. Jin, and S. Gong, “Tunneling-induced large cross-phase modulation in an asymmetric quantum well,” Opt. Lett.32, 2475–2477 (2007). [CrossRef] [PubMed]
  35. J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Dynamic control of coherent pulses via fano-type interference in asymmetric double quantum wells,” Phys. Rev. A73, 053818 (2006). [CrossRef]
  36. N. Cui, Y. Niu, H. Sun, and S. Gong, “Self-induced transmission on intersubband resonance in multiple quantum wells,” Phys. Rev. B78, 075323 (2008). [CrossRef]
  37. W. Yan, T. Wang, X. M. Li, and Y. J. Jin, “Electromagnetically induced transparency and theoretical slow light in semiconductor multiple quantum wells,” Appl. Phys. B108, 515–519 (2012). [CrossRef]
  38. J. Faist, F. Capasso, C. Sirtori, K. W. West, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature390, 589–591 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited