OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 12592–12603

A 3D tunable and multi-frequency graphene plasmonic cloak

Mohamed Farhat, Carsten Rockstuhl, and Hakan Bağcı  »View Author Affiliations


Optics Express, Vol. 21, Issue 10, pp. 12592-12603 (2013)
http://dx.doi.org/10.1364/OE.21.012592


View Full Text Article

Enhanced HTML    Acrobat PDF (1772 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the possibility of cloaking three-dimensional objects at multi-frequencies in the far-infrared part of the spectrum. The proposed cloaking mechanism exploits graphene layers wrapped around the object to be concealed. Graphene layers are doped via a variable external voltage difference permitting continuous tuning of the cloaking frequencies. Particularly, two configurations are investigated: (i) Only one graphene layer is used to suppress the scattering from a dielectric sphere. (ii) Several of these layers biased at different gate voltages are used to achieve a multi-frequency cloak. These frequencies can be set independently. The proposed cloak’s functionality is verified by near- and far-field computations. By considering geometry and material parameters that are realizable by practical experiments, we contribute to the development of graphene based plasmonic applications that may find use in disruptive photonic technologies.

© 2013 OSA

OCIS Codes
(160.3918) Materials : Metamaterials
(050.6624) Diffraction and gratings : Subwavelength structures
(230.3205) Optical devices : Invisibility cloaks

ToC Category:
Metamaterials

History
Original Manuscript: March 4, 2013
Revised Manuscript: May 11, 2013
Manuscript Accepted: May 12, 2013
Published: May 15, 2013

Citation
Mohamed Farhat, Carsten Rockstuhl, and Hakan Bağcı, "A 3D tunable and multi-frequency graphene plasmonic cloak," Opt. Express 21, 12592-12603 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-10-12592


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  2. U. Leonhardt, “Optical conformal mapping,” Science312(5781), 1777–1780 (2006). [CrossRef] [PubMed]
  3. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328(5976), 337–339 (2010). [CrossRef] [PubMed]
  4. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics1(4), 224–227 (2007). [CrossRef]
  5. M. Farhat, S. Guenneau, A. B. Movchan, and S. Enoch, “Achieving invisibility over a finite range of frequencies,” Opt. Express16(8), 5656–5661 (2008). [CrossRef] [PubMed]
  6. I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, “Anisotropic metamaterials emulated by tapered waveguides: Application to optical cloaking,” Phys. Rev. Lett.102(21), 213901 (2009). [CrossRef] [PubMed]
  7. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006). [CrossRef] [PubMed]
  8. A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.72(1), 016623 (2005). [CrossRef] [PubMed]
  9. A. Alù and N. Engheta, “Plasmonic materials in transparency and cloaking problems: Mechanism, robustness, and physical insights,” Opt. Express15(6), 3318–3332 (2007). [CrossRef] [PubMed]
  10. S. Mühlig, M. Farhat, C. Rockstuhl, and F. Lederer, “Cloaking dielectric spherical objects by a shell of metallic nanoparticles,” Phys. Rev. B83(19), 195116 (2011). [CrossRef]
  11. M. Farhat, S. Mühlig, C. Rockstuhl, and F. Lederer, “Scattering cancellation of the magnetic dipole field from macroscopic spheres,” Opt. Express20(13), 13896–13906 (2012). [CrossRef] [PubMed]
  12. D. Rainwater, A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Alù, “Experimental verification of three dimensional plasmonic cloaking in free-space,” New J. Phys.14(1), 013054 (2012). [CrossRef]
  13. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306(5696), 666–669 (2004). [CrossRef] [PubMed]
  14. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys.81(1), 109–162 (2009). [CrossRef]
  15. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308–1308 (2008). [CrossRef] [PubMed]
  16. K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature490(7419), 192–200 (2012). [CrossRef] [PubMed]
  17. T. Mueller, F. N. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics4(5), 297–301 (2010). [CrossRef]
  18. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature474(7349), 64–67 (2011). [CrossRef] [PubMed]
  19. E. H. Hwang and S. Das Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B75(20), 205418 (2007). [CrossRef]
  20. M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B80(24), 245435 (2009). [CrossRef]
  21. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6(10), 630–634 (2011). [CrossRef] [PubMed]
  22. F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: A platform for strong light-matter interactions,” Nano Lett.11(8), 3370–3377 (2011). [CrossRef] [PubMed]
  23. L. Wang, W. Cai, X. Zhang, and J. Xu, “Surface plasmons at the interface between graphene and Kerr-type nonlinear media,” Opt. Lett.37(13), 2730–2732 (2012). [CrossRef] [PubMed]
  24. K. Y. Shin, J.-Y. Hong, and J. Jang, “Micropatterning of graphene sheets by inkjet printing and its wideband dipole-antenna application,” Adv. Mater.23(18), 2113–2118 (2011). [CrossRef] [PubMed]
  25. J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano6(1), 431–440 (2012). [CrossRef] [PubMed]
  26. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science332(6035), 1291–1294 (2011). [CrossRef] [PubMed]
  27. P.-Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano5(7), 5855–5863 (2011). [CrossRef] [PubMed]
  28. S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett.108(4), 047401 (2012). [CrossRef] [PubMed]
  29. A. Yu. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Fields radiated by a nanoemitter in a graphene sheet,” Phys. Rev. B84(19), 195446 (2011). [CrossRef]
  30. R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express20(27), 28017–28024 (2012). [CrossRef] [PubMed]
  31. J. W. Ko, S.-W. Kim, J. Hong, K. Kang, and C. B. Park, “Synthesis of graphene-wrapped CuO hybrid materials by CO2 mineralization,” Green Chem.14(9), 2391–2394 (2012). [CrossRef]
  32. J. S. Lee, K. H. You, and C. B. Park, “Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene,” Adv. Mater.24(8), 1084–1088 (2012). [CrossRef] [PubMed]
  33. A. Alù and N. Engheta, “Cloaked near-field scanning optical microscope tip for noninvasive near-field imaging,” Phys. Rev. Lett.105(26), 263906 (2010). [CrossRef] [PubMed]
  34. G. W. Hanson, “Dyadic Green’s functions and guided surface waves on graphene,” J. Appl. Phys.103, 064302 (2006). [CrossRef]
  35. P. Y. Chen, J. Soric, and A. Alù, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater.24(44), OP281–OP304 (2012). [CrossRef] [PubMed]
  36. P. Y. Chen and A. Alù, “Mantle cloaking using thin patterned metasurfaces,” Phys. Rev. B84(20), 205110 (2011). [CrossRef]
  37. A. Alù, “Mantle cloak: Invisibility induced by a surface,” Phys. Rev. B80(24), 245115 (2009). [CrossRef]
  38. F. Monticone, C. Argyropoulos, and A. Alù, “Layered plasmonic cloaks to tailor the optical scattering at the nanoscale,” Sci Rep2, 912–918 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited