OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S5 — Sep. 9, 2013
  • pp: A901–A908

Surface plasmon-enhanced photoluminescence of DCJTB by using silver nanoparticle arrays

Hsiang-Lin Huang, Chen Feng Chou, Shi Hua Shiao, Yi-Cheng Liu, Jian-Jang Huang, Shien Uang Jen, and Hai-Pang Chiang  »View Author Affiliations

Optics Express, Vol. 21, Issue S5, pp. A901-A908 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1107 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



It is demonstrated that photoluminescence of DCJTB can be enhanced by surface plasmons occurred in silver nanoparticle arrays on glass substrates fabricated by using nanosphere lithography (NSL) combined with reactive ion etching (RIE). By changing the size of the seed polystyrene nanosphere with fixed thickness of SiO2 film as a buffer layer between silver nanoparticles and fluorescent dye, we systematically studied the interaction between surface plasmons in Ag nanostructures and fluorescent dye by measuring the photoluminescence and time-resolved photoluminescence (TRPL) of the samples. As compared with pure DCJTB, it is observed that PL enhancement as high as 9.4 times and life time shortening from 0.966 ns shortened to 0.63 ns can be achieved with polystyrene nanosphere 430nm in diameter. The physical origin due to plasmonic excitation has been clarified from 3D finite element simulations, as well as the assistance of UV-visible reflectance spectrum.

© 2013 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.2510) Physical optics : Fluorescence
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:

Original Manuscript: June 28, 2013
Revised Manuscript: August 6, 2013
Manuscript Accepted: August 26, 2013
Published: September 9, 2013

Virtual Issues
Vol. 8, Iss. 10 Virtual Journal for Biomedical Optics

Hsiang-Lin Huang, Chen Feng Chou, Shi Hua Shiao, Yi-Cheng Liu, Jian-Jang Huang, Shien Uang Jen, and Hai-Pang Chiang, "Surface plasmon-enhanced photoluminescence of DCJTB by using silver nanoparticle arrays," Opt. Express 21, A901-A908 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Zhang, A. Dragan, C. D. Geddes, “Metal-enhanced fluorescence from tin nanostructured surfaces,” J. Appl. Phys. 107(2), 024302 (2010). [CrossRef]
  2. K. Aslan, Z. Leonenko, J. R. Lakowicz, C. D. Geddes, “Annealed silver-island films for applications in metal-enhanced fluorescence: interpretation in terms of radiating plasmons,” J. Fluoresc. 15(5), 643–654 (2005). [CrossRef] [PubMed]
  3. X. Y. Lang, P. F. Guan, T. Fujita, M. W. Chen, “Tailored nanoporous gold for ultrahigh fluorescence enhancement,” Phys. Chem. Chem. Phys. 13(9), 3795–3799 (2011). [CrossRef] [PubMed]
  4. H. Szmacinski, R. Badugu, J. R. Lakowicz, “Fabrication and Characterization of Planar Plasmonic Substrates with High Fluorescence Enhancement,” J Phys Chem C Nanomater Interfaces 114(49), 21142–21149 (2010). [CrossRef] [PubMed]
  5. F. Liu, J. M. Nunzi, “Enhanced organic light emitting diode and solar cell performances using silver nano-clusters,” Org. Electron. 13(9), 1623–1632 (2012). [CrossRef]
  6. Y. Z. Su, M. W. Hung, K. C. Huang, “An evanescent wave fiber optic biosensor based on Metal-Enhanced Fluorescence (MEF),” Physics Procedia 19, 379–384 (2011). [CrossRef]
  7. T. J. Sørensen, B. W. Laursen, R. Luchowski, T. Shtoyko, I. Akopova, Z. Gryczynski, I. Gryczynski, “Enhanced fluorescence emission of Me-ADOTA+ by self-assembled silver nanoparticles on a gold film,” Chem. Phys. Lett. 476(1-3), 46–50 (2009). [CrossRef] [PubMed]
  8. S. D. Choudhury, R. Badugu, K. Ray, J. R. Lakowicz, “Silver-Gold Nanocomposite Substrates for Metal-Enhanced Fluorescence: Ensemble and Single-Molecule Spectroscopic Studies,” J Phys Chem C Nanomater Interfaces 116(8), 5042–5048 (2012). [CrossRef] [PubMed]
  9. N. Akbay, J. R. Lakowicz, K. Ray, “Distance-Dependent Metal-Enhanced Intrinsic Fluorescence of Proteins Using Polyelectrolyte Layer-by-Layer Assembly and Aluminum Nanoparticles,” J Phys Chem C Nanomater Interfaces 116(19), 10766–10773 (2012). [CrossRef] [PubMed]
  10. Y. Fu, J. Zhang, J. R. Lakowicz, “Metallic-Nanostructure-Enhanced Fluorescence of Single Flavin Cofactor and Single Flavoenzyme Molecules,” J Phys Chem C Nanomater Interfaces 115(15), 7202–7208 (2011). [CrossRef] [PubMed]
  11. J. D. Pockrand, J. D. Swalen, J. G. Gordon, M. R. Philpott, “Surface plasmon spectroscopy of organic monolayer assemblies,” Surf. Sci. 74(1), 237–244 (1978). [CrossRef]
  12. H. P. Chiang, J. L. Lin, Z. W. Chen, “High sensitivity surface plasmon resonance sensor based on phase interrogation at optimal incident wavelengths,” Appl. Phys. Lett. 88(14), 141105 (2006). [CrossRef]
  13. T. C. Peng, W. C. Lin, C. W. Chen, D. P. Tsai, H. P. Chiang, “Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensor by using silver nanoparticles,” Plasmonics 6(1), 29–34 (2011). [CrossRef]
  14. W. C. Lin, T. R. Tsai, H. L. Huang, C. Y. Shiau, H. P. Chiang, “SERS Study of Histamine by using Silver Film over Nanosphere Structure,” Plasmonics 7(4), 709–716 (2012). [CrossRef]
  15. X. Wen, Z. Xi, X. Jiao, W. Yu, G. Xue, D. Zhang, Y. Lu, P. Wang, S. Blair, H. Ming, “Plasmonic Coupling Effect in Ag Nanocap–Nanohole Pairs for Surface-Enhanced Raman Scattering,” Plasmonics (2013).
  16. W. C. Lin, S. H. Huang, C. L. Chen, C. C. Chen, D. P. Tsai, H. P. Chiang, “Controlling SERS intensity by tuning the size and height of silver nanoparticle array,” Appl. Phys., A Mater. Sci. Process. 101(1), 185–189 (2010). [CrossRef]
  17. J. M. Montgomery, A. Imre, U. Welp, V. Vlasko-Vlasov, S. K. Gray, “SERS enhancements via periodic arrays of gold nanoparticles on silver film structures,” Opt. Express 17(10), 8669–8675 (2009). [CrossRef] [PubMed]
  18. Y. Chu, D. Wang, W. Zhu, K. B. Crozier, “Double resonance surface enhanced Raman scattering substrates: an intuitive coupled oscillator model,” Opt. Express 19(16), 14919–14928 (2011). [CrossRef] [PubMed]
  19. J. Xu, P. Kvasnička, M. Idso, R. W. Jordan, H. Gong, J. Homola, Q. Yu, “Understanding the effects of dielectric medium, substrate, and depth on electric fields and SERS of quasi-3D plasmonic nanostructures,” Opt. Express 19(21), 20493–20505 (2011). [CrossRef] [PubMed]
  20. T. Som, B. Karmakar, “Surface plasmon resonance and enhanced fluorescence application of single-step synthesized elliptical nano gold-embedded antimony glass dichroic nanocomposites,” Plasmonics 5(2), 149–159 (2010). [CrossRef]
  21. J. Zhang, Y. Fu, M. H. Chowdhury, J. R. Lakowicz, “Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: coupling effect between metal particles,” Nano Lett. 7(7), 2101–2107 (2007). [CrossRef] [PubMed]
  22. S. Xu, Y. Cao, J. Zhou, X. Wang, X. Wang, W. Xu, “Plasmonic enhancement of fluorescence on silver nanoparticle films,” Nanotechnology 22(27), 275715 (2011). [CrossRef] [PubMed]
  23. P. Wang, X. Zhao, B. Li, “Plasmon-enhanced yellow light emission in hybrid nanostructures formed by fluorescent molecules and polymer,” Nano Energy 1(1), 152–158 (2012). [CrossRef]
  24. C. H. Lu, C. C. Lan, Y. L. Lai, Y. L. Li, C. P. Liu, “Enhancement of Green Emission from InGaN/GaN Multiple Quantum Wells via Coupling to Surface Plasmons in a Two-Dimensional Silver Array,” Adv. Funct. Mater. 21(24), 4719–4723 (2011). [CrossRef]
  25. L. A. Dick, A. D. McFarland, C. L. Haynes, R. P. Van Duyne, “Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): improvements in surface nanostructure stability and suppression of irreversible loss,” J. Phys. Chem. B 106(4), 853–860 (2002). [CrossRef]
  26. W. C. Lin, L. S. Liao, Y. H. Chen, H. C. Chang, D. P. Tsai, H. P. Chiang, “Size dependence of Nanoparticle-SERS Enhancement from Silver Film over Nanosphere (AgFON) Substrate,” Plasmonics 6(2), 201–206 (2011). [CrossRef]
  27. Y. J. Lu, C. H. Chang, C. L. Lin, C. C. Wu, H. L. Hsu, L. J. Chen, Y. T. Lin, R. Nishikawa, “Achieving three-peak white organic light-emitting devices using wavelength selective mirror electrodes,” Appl. Phys. Lett. 92(12), 123303 (2008). [CrossRef]
  28. Z. Guo, W. Zhu, H. Tian, “Dicyanomethylene-4H-pyran chromophores for OLED emitters, logic gates and optical chemosensors,” Chem. Commun. (Camb.) 48(49), 6073–6084 (2012). [CrossRef] [PubMed]
  29. T. Zheng, W. C. H. Choy, “Red organic light emitting devices with reduced efficiency roll-off behavior by using hybrid fluorescent/phosphorescent emission structure,” Thin Solid Films 519(2), 872–875 (2010). [CrossRef]
  30. G. Y. Zhong, D. E. Kim, O. K. Kwon, Y. K. Jang, Y. S. Kwon, “The carrier-trapping effect of dye doped in Alq,” J. Appl. Phys. 101(5), 054507 (2007). [CrossRef]
  31. M. Yi, D. Zhang, X. Wen, Q. Fu, P. Wang, Y. Lu, H. Ming, “Fluorescence Enhancement Caused by Plasmonics Coupling Between Silver Nano-Cubes and Silver Film,” Plasmonics 6(2), 213–217 (2011). [CrossRef]
  32. D. W. Lynch and W. R. Hunter, “Comments on the optical constants of metals and an introduction to the data for several metals,” in Handbook of Optical Constants of Solids,E.D. Palik, ed. ~Academic, Orlando, Fla., pp. 275–367 (1985).
  33. P. Anger, P. Bharadwaj, L. Novotny, “Enhancement and Quenching of Single-Molecule Fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006). [CrossRef] [PubMed]
  34. R. Ruppin, “Decay of an excited molecule near a small metal sphere,” J. Chem. Phys. 76(4), 1681–1684 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited