OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 11 — Jun. 3, 2013
  • pp: 13134–13144

Optical multi-hysteresises and quasi-solitons in nonlinear plasma

A. E. Kaplan  »View Author Affiliations


Optics Express, Vol. 21, Issue 11, pp. 13134-13144 (2013)
http://dx.doi.org/10.1364/OE.21.013134


View Full Text Article

Enhanced HTML    Acrobat PDF (879 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An overdense plasma layer irradiated by intense light can exhibit dramatic nonlinear-optical effects due to a relativistic mass-effect of free electrons: highly-multiple hysteresises of reflection and transition, and emergence of immobile waves of large amplitude. Those are trapped quasi-soliton spikes sustained by a weak pumping having a tiny fraction of their peak intensity once they have been excited first by higher power pumping. The phenomenon persists even in the layers with ”soft”, wash-out boundaries, as well as in a semi-infinite plasma with low absorption.

© 2013 OSA

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.1450) Nonlinear optics : Bistability
(350.5720) Other areas of optics : Relativity
(190.6135) Nonlinear optics : Spatial solitons

ToC Category:
Nonlinear Optics

History
Original Manuscript: March 26, 2013
Revised Manuscript: May 5, 2013
Manuscript Accepted: May 7, 2013
Published: May 21, 2013

Citation
A. E. Kaplan, "Optical multi-hysteresises and quasi-solitons in nonlinear plasma," Opt. Express 21, 13134-13144 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-11-13134


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. E. Kaplan, “Hysteresis reflection and refraction by nonlinear boundary - a new class of effects in nonlinear optics,” JETP Lett.24, 114–119 (1976).
  2. A. E. Kaplan, “Theory of hysteresis reflection and refraction of light by a boundary of a nonlinear medium,” Sov. Physics JETP45, 896–905 (1977).
  3. P. W. Smith, J. P. Hermann, W. J. Tomlinson, and P. J. Maloney, “Optical bistability at a non-linear interface,” Appl. Phys. Lett.35, 846–848 (1979). [CrossRef]
  4. P. W. Smith, W. J. Tomlinson, P. J. Maloney, and J. P. Hermann, “Experimental studies of a non-linear interface,” IEEE JQE17, 340–348 (1981). [CrossRef]
  5. P. W. Smith and W. J. Tomlinson, “Nonlinear optical interfaces – switching behavior,” IEEE JQE20, 30–36 (1984). [CrossRef]
  6. S. De Nicola, A. E. Kaplan, S. Martellucci, P. Mormile, G. Pierattini, and J. Quartieri, “Stable hysteretic reflection of light at a nonlinear interface,” Appl. Phys. B49, 441–444 (1989). [CrossRef]
  7. A. I. Akhiezer and R. V. Polovin, “Theory of wave motion of an electron plasma” Sov. Phys. JETP-USSR, 3, 696–705 (1956).
  8. C. Max and F. Perkins, “Strong electromagnetic waves in overdense plasmas” Phys. Rev. Lett., 27, 1342–1345 (1971). [CrossRef]
  9. J. H. Marburger and R. F. Tooper, “Nonlinear optical standing waves in overdense plasmas, ” Phys. Rev. Lett., 35, 1001–1004 (1975). [CrossRef]
  10. S. V. Bulanov, I. N. Inovenkov, V. I. Kirsanov, N. M. Naumova, and A. S. Sakharov, “Nonlinear depletion of ultrashort and relativistically strong laser pulses in an underdense plasma,” Phys. Fluids B4, 1935–1942 (1992). [CrossRef]
  11. T. Z. Esirkepov, F. F. Kamenets, S. V. Bulanov, and N. M. Naumova, “Low-frequency relativistic electromagnetic solitons in collisionless plasmas,” JETP Lett.68, 36–41 (1998). [CrossRef]
  12. M. Tushentsov, A. Kim, F. Cattani, D. Anderson, and M. Lisak, “Electromagnetic energy penetration in the self-induced transparency regime of relativistic laser-plasma interactions,” Phys. Rev. Lett.87, 275002 (2001). [CrossRef]
  13. T. Esirkepov, K. Nishihara, S. V. Bulanov, and F. Pegoraro, “Three-dimensional relativistic electromagnetic subcycle solitons,” Phys. Rev. Lett.89, 275002 (2002). [CrossRef]
  14. G. Lehmann, E. W. Laedke, and K. H. Spatchek, “Two-dimensional dynamics of relativistic solitons in cold plasmas,” Phys. Plasma15, 072307 (2008) and references therein [CrossRef]
  15. G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys.78, 309–371 (2006), and references therein. [CrossRef]
  16. W. Chen and D. L. Mills, “Gap solitons and the nonlinear optical response of superlattices,” Phys. Rev. Lett.58, 160–163 (1987). [CrossRef] [PubMed]
  17. J. E. Sipe and H. G. Winful, “Nonlinear Schroedinger solitons in periodic structure,” Opt. Lett.13, 132–133 (1988). [CrossRef] [PubMed]
  18. D. N. Christodoulides and R. I. Joseph, “Slow Bragg solitons in nonlinear periodic structures,” Phys. Rev. Lett.62, 1746 (1989). [CrossRef] [PubMed]
  19. B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett.76, 1627–1630 (1996). [CrossRef] [PubMed]
  20. D. Mandelik, H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Observation of mutually trapped multiband optical breathers in waveguide arrays,” Phys. Rev. Lett.90, 053902 (2003). [CrossRef] [PubMed]
  21. O. Zobay, S. Potting, P. Meystre, and E. M. Wright, “Creation of gap solitons in Bose-Einstein condensates,” Phys. Rev. A59, 643–648 (1999). [CrossRef]
  22. H. G. Winful and J. H. Marburger, “Hysteresis and optical bistability in degenerate four-wave mixing”, Appl. Phys. Lett.,36, 613–614 (1980). [CrossRef]
  23. A. E. Kaplan and C. T. Law, “Isolas in four-wave mixing optical bistability,” IEEE J. Quant. Electr., QE-21: 1529–1537 (1985). [CrossRef]
  24. D. J. Gauthier, M. S. Malcut, A. L. Gaeta, and R. W. Boyd, “Polarization bistability of counterpropagating laser beams”, Phys. Rev. Lett.64, 1721–1724 (1990) [CrossRef] [PubMed]
  25. A. E. Kaplan and Y. J. Ding, “Hysteretic and multiphoton optical resonances of a single cyclotron electron,” IEEE JQE24, 1470–1482 (1988), and references therein. [CrossRef]
  26. A. V. Korzhimanov, V. I. Eremin, A. V. Kim, and M. R. Tushentsov, “Interaction of relativistically strong electromagnetic waves with a layer of overdense plasma,” J. Expr. Theor. Phys., 105, 675–686 (2007) [CrossRef]
  27. A. E. Kaplan, “Hysteresis in cyclotron resonance based on weak-relativistic mass-effect of the electron,” Phys. Rev. Lett.48, 138–141 (1982). [CrossRef]
  28. G. Gabrielse, H. Dehmelt, and W. Kells, “Observation of a relativistic bistable hysteresis in the cyclotron motion of a single electron,” Phys. Rev. Lett.54, 537–539 (1985). [CrossRef] [PubMed]
  29. A. E. Kaplan, “Relativistic nonlinear optics of a single cyclotron electron,” Phys. Rev. Lett.56: 456–459 (1986). [CrossRef] [PubMed]
  30. A. E. Kaplan and P. L. Shkolnikov, “Lasetron: a proposed source of powerful nuclear-time-scale electromagnetic bursts,” Phys. Rev. Lett.88, 074801(1–4), (2002). [CrossRef] [PubMed]
  31. R. J. Noble, “Plasma wave generation in the beat-wave accelerator,” Phys. Rev. A32, 460–471 (1985). [CrossRef] [PubMed]
  32. A. B. Shvartsburg, “Resonant Joule phenomena in a magnetoplasma”, Phys. Reports, 125, 187–252 (1985) [CrossRef]
  33. B. M. Ashkinadze and V. I. Yudson, “Hysteretic microwave cyclotron-like resonance in a laterally confined two-dimensional electron gas,” Phys. Rev. Lett.83, 812–815 (1999). [CrossRef]
  34. G. Shvets, “Beat-wave excitation of plasma waves based on relativistic bistability,” Phys. Rev. Lett.93, 195004 (2004). [CrossRef] [PubMed]
  35. B.Ya. Zeldovich, “Nonlinear optical effects and the conservation laws,” Brief Comm. Physics, Lebedev Inst. (FIAN), Moscow2(5), 20–25 (1970).
  36. H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabri-Perot interferometer,” Phys. Rev. Lett.36, 1135–1138 (1976). [CrossRef]
  37. This suggests an explanation of a hysteresis lacking in [5]: an artificial nonlinearity used there was due to small dielectric particles suspended in a liquid and had large dissipation because of strong light scattering, vsthe experiments [3,4,6] with nearly transparent fluids.
  38. A. E. Kaplan, “Gradient marker” – a universal wave pattern in inhomogeneous continuum”, Phys. Rev. Lett.,109, 153901(1–5) (2012) [CrossRef]
  39. G. A. Askaryan, “Effects of the gradient of a strong electromagnetic beam on electrons and atoms” Sov. Phys., JETP-USSR, 15, 1088–1090 (1962).
  40. V. I. Bespalov and V. I. Talanov, “Filamentary structure of light beams in nonlinear liquids” JETP Lett.3, 307–310 (1966).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited