OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 11 — Jun. 3, 2013
  • pp: 13187–13192

Strong coupling of in-plane propagating plasmon modes and its control

Sachin Kasture, Prasanta Mandal, S. Dutta Gupta, and Achanta Venu Gopal  »View Author Affiliations

Optics Express, Vol. 21, Issue 11, pp. 13187-13192 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1151 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show anti-crossings due to strong in-plane coupling of grating excited propagating plasmon modes in dielectric-metal-dielectric structure with 2D dielectric pattern on top. Grating coupled propagating plasmon modes along with their complete dispersion in the measurement range and all different sample orientations are calculated first. Further a coupled mode theory is presented for the specific geometry presented here. Experimentally measured anti-crossing widths are compared with those calculated by coupled mode theory. It is shown that the coupling strength of the plasmon modes and thus the anti-crossing width can be controlled by the orientation of the sample.

© 2013 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(240.1485) Optics at surfaces : Buried interfaces

ToC Category:
Optics at Surfaces

Original Manuscript: March 7, 2013
Revised Manuscript: May 16, 2013
Manuscript Accepted: May 16, 2013
Published: May 23, 2013

Sachin Kasture, Prasanta Mandal, S. Dutta Gupta, and Achanta Venu Gopal, "Strong coupling of in-plane propagating plasmon modes and its control," Opt. Express 21, 13187-13192 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Novotny, “Strong coupling, energy splitting, and level crossings: A classical perspective,” Am. J. Phys.78(11), 1199–1202 (2010). [CrossRef]
  2. R. M. Stevenson, V. N. Astratov, M. S. Skolnick, D. M. Whittaker, M. Emam-Ismail, A. I. Tartakovskii, P. G. Savvidis, J. J. Baumberg, and J. S. Roberts, “Continuous wave observation of massive polariton redistribution by stimulated scattering in semiconductor microcavities,” Phys. Rev. Lett.85(17), 3680–3683 (2000). [CrossRef] [PubMed]
  3. E. A. Stinaff, M. Scheibner, A. S. Bracker, I. V. Ponomarev, V. L. Korenev, M. E. Ware, M. F. Doty, T. L. Reinecke, and D. Gammon, “Optical signatures of coupled quantum dots,” Science311(5761), 636–639 (2006). [CrossRef] [PubMed]
  4. D. Sarid, R. T. Deck, and J. J. Fasano, “Enhanced nonlinearity of the propagation constant of a long-range surface-plasma wave,” J. Opt. Soc. Am.72(10), 1345–1347 (1982). [CrossRef]
  5. W. R. Holland and D. G. Hall, “Surface-plasmon dispersion relation: Shifts induced by the interaction with localized plasma resonances,” Phys. Rev. B27(12), 7765–7768 (1983). [CrossRef]
  6. S. D. Gupta, G. V. Varada, and G. S. Agarwal, “Surface plasmons in two-sided corrugated thin films,” Phys. Rev. B Condens. Matter36(12), 6331–6335 (1987). [CrossRef] [PubMed]
  7. K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics3(1), 55–58 (2009). [CrossRef]
  8. Y. Chu and K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Opt. Lett.34(3), 244–246 (2009). [CrossRef] [PubMed]
  9. G. S. Agarwal and S. Dutta Gupta, “Interaction between surface plasmons and localized plasmons,” Phys. Rev. B Condens. Matter32(6), 3607–3611 (1985). [CrossRef] [PubMed]
  10. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett.92(10), 107401 (2004). [CrossRef] [PubMed]
  11. A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, O. J. F. Martin, J. Kuhl, and H. Giessen, “Interaction between localized and delocalized surface plasmon polariton modes in a metallic photonic crystal,” Phys. Status Solidi243(10), 2344–2348 (2006) (b). [CrossRef]
  12. Z. Chen, I. R. Hooper, and J. R. Sambles, “Grating-coupled surface plasmon polaritons and waveguide modes in a silver-dielectric-silver structure,” J. Opt. Soc. Am. A24(11), 3547–3553 (2007). [CrossRef] [PubMed]
  13. H. Gao, J. Henzie, M. H. Lee, and T. W. Odom, “Screening plasmonic materials using pyramidal gratings,” Proc. Natl. Acad. Sci. U.S.A.105(51), 20146–20151 (2008). [CrossRef] [PubMed]
  14. A. Ghoshal, I. Divliansky, and P. G. Kik, “Experimental observation of mode-selective anticrossing in surface-plasmon-coupled metal nanoparticle arrays,” Appl. Phys. Lett.94(17), 171108 (2009). [CrossRef]
  15. J. Li, H. Lu, J. T. K. Wan, and H. C. Ong, “The plasmonic properties of elliptical metallic hole arrays,” Appl. Phys. Lett.94(3), 033101 (2009). [CrossRef]
  16. A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: Strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett.91(18), 183901 (2003). [CrossRef] [PubMed]
  17. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1986).
  18. S. D. Gupta, “Theoretical study of plasma resonance absorption in conical diffraction,” J. Opt. Soc. Am. B4(11), 1893–1898 (1987). [CrossRef]
  19. S. Kasture, P. Mandal, A. Singh, A. Ramsay, A. S. Vengurlekar, S. Dutta Gupta, V. Belotelov, and A. Venu Gopal, “Near dispersion-less surface plasmon polariton resonances at a metal-dielectric interface with patterned dielectric on top,” Appl. Phys. Lett.101(9), 091602 (2012). [CrossRef]
  20. S. G. Romanov, N. Vogel, K. Bley, K. Landfester, C. K. Weiss, S. Orlov, A. V. Korovin, G. P. Chuiko, A. Regensburger, A. S. Romanova, A. Kriesch, and U. Peschel, “Probing guided in a monolayer colloidal crystal on a flat metal film,” Phys. Rev. B86(19), 195145 (2012). [CrossRef]
  21. M. López-García, J. F. Galisteo-López, A. Blanco, J. Sánchez-Marcos, C. López, and A. García-Martín, “Enhancement and directionality of spontaneous emission in hybrid self-assembled photonic-plasmonic crystals,” Small6(16), 1757–1761 (2010). [CrossRef] [PubMed]
  22. H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys.43(5), 2327–2335 (1972). [CrossRef]
  23. R. Daendliker, “Coupled waves: A powerful concept in modern optics,” SPIE Proc. Fifth International Topical Meeting on Education and Training in Optics 3190, 279–288 (1997). [CrossRef]
  24. A. Kolomenskii, S. Peng, J. Hembd, A. Kolomenski, J. Noel, J. Strohaber, W. Teizer, and H. Schuessler, “Interaction and spectral gaps of surface plasmon modes in gold nano-structures,” Opt. Express19(7), 6587–6598 (2011). [CrossRef] [PubMed]
  25. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  26. J. M. Liu, Photonic Devices (Cambridge University, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited