OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 11 — Jun. 3, 2013
  • pp: 13272–13278

Intracavity absorption spectroscopy with a turbulent detuned actively mode-locked Ti:sapphire laser

Jean-Paul Pique  »View Author Affiliations

Optics Express, Vol. 21, Issue 11, pp. 13272-13278 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (994 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Intracavity laser absorption spectroscopy (ICLAS) is an extremely sensitive method for the detection of very weak absorptions. However, the conventional use of multimode lasers has thus far significantly reduced its ability to detect in situ molecules and its sensitivity. We propose the use of a new type of laser that overcomes these limitations: the turbulent detuned actively mode-locked (TDAM) Ti:sapphire laser, which owing to its short coherence length, eliminates harmful intracavity interferences. The proposed technique called TDAM-ICLAS is furthermore highly sensitive to intracavity absorption, continuously tunable and has no frequency chirp.

© 2013 OSA

OCIS Codes
(010.1120) Atmospheric and oceanic optics : Air pollution monitoring
(140.3590) Lasers and laser optics : Lasers, titanium
(140.4050) Lasers and laser optics : Mode-locked lasers
(300.1030) Spectroscopy : Absorption
(300.6360) Spectroscopy : Spectroscopy, laser
(140.3518) Lasers and laser optics : Lasers, frequency modulated

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: April 10, 2013
Revised Manuscript: May 16, 2013
Manuscript Accepted: May 17, 2013
Published: May 24, 2013

Jean-Paul Pique, "Intracavity absorption spectroscopy with a turbulent detuned actively mode-locked Ti:sapphire laser," Opt. Express 21, 13272-13278 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. M. Baev, T. Latz, and P. E. Toschek, “Laser intracavity absorption spectroscopy,” Appl. Phys. B69(3), 171–202 (1999). [CrossRef]
  2. F. Stoeckel, M. A. Melieres, and M. Chenevier, “Quantitative measurement of very weak H2O absorption lines by time resolved intracavity laser spectroscopy,” J. Chem. Phys.76(5), 2191–2196 (1982). [CrossRef]
  3. H. Huang and K. K. Lehmann, “Long-term stability in continuous wave cavity ring down spectroscopy experiments,” Appl. Opt.49(8), 1378–1387 (2010). [CrossRef] [PubMed]
  4. G. Méjean, S. Kassi, and D. Romanini, “Measurement of reactive atmospheric species by ultraviolet cavity-enhanced spectroscopy with a mode-locked femtosecond laser,” Opt. Lett.33(11), 1231–1233 (2008). [CrossRef] [PubMed]
  5. F. Mazzotti, O. V. Naumenko, S. Kassi, A. D. Bykov, and A. Campargue, “ICLAS of weak transitions of water between 11300 and 12850 cm−1,” J. Mol239(Spec.), 174–181 (2006).
  6. A. Kachanov, A. Charvat, and F. Stoeckel, “Intracavity laser spectroscopy with vibronic solid-state lasers,” J. Opt. Soc. Am. B11, 2412–2421 (1994). [CrossRef]
  7. T. Ueda, N. Kato, A. Takemura, H. Koishi, and A. Morinaga, “Intracavity absorption spectroscopy with a tunable multimode traveling-wave ring Ti:sapphire laser,” Appl. Opt.51(20), 4660–4666 (2012). [CrossRef] [PubMed]
  8. B. Löhden, S. Kuznetsova, K. Sengstock, V. M. Baev, A. Goldman, S. Cheskis, and B. Palsdottir, “Fiber laser intracavity absorption spectroscopy for in situ multicomponent gas analysis in the atmosphere and combustion environments,” Appl. Phys. B102(2), 331–344 (2011). [CrossRef]
  9. K. Nakamura, T. Hara, M. Yoshida, T. Miyahara, and H. Ito, “Optical frequency domain ranging by a frequency-shifted feedback laser,” IEEE J. Quantum Electron.36(3), 305–316 (2000). [CrossRef]
  10. J. P. Pique, “Pulsed frequency shifted feedback laser for accurate long distance measurements: beat order determination,” Opt. Commun.286, 233–238 (2013). [CrossRef]
  11. J. P. Pique and S. Farinotti, “Efficient modeless laser for a mesospheric sodium laser guide star,” J. Opt. Soc. Am. B20(10), 2093–2101 (2003). [CrossRef]
  12. J. P. Pique, V. Fesquet, and S. Jacob, “Pulsed frequency-shifted feedback laser for laser guide stars: intracavity preamplifier,” Appl. Opt.50(33), 6294–6301 (2011). [CrossRef] [PubMed]
  13. T. Latz, F. Aupers, V. M. Baev, and P. E. Toschek, “Emission spectrum of a multimode dye laser with frequency-shifted feedback for the simulation of Rayleigh scattering,” Opt. Commun.156(1-3), 210–218 (1998). [CrossRef]
  14. F. X. Kärtner, D. M. Zumbühl, and N. Matuschek, “Turbulence in mode-locked lasers,” Phys. Rev. Lett.82(22), 4428–4431 (1999). [CrossRef]
  15. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simecková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf.110(9-10), 533–572 (2009). [CrossRef]
  16. V. M. Baev, J. Eschner, and A. Weiler, “Intracavity spectroscopy with modulated multimode lasers,” Appl. Phys. B49(4), 315–322 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited