OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 11 — Jun. 3, 2013
  • pp: 13305–13321

Overcoming temporal polarization instabilities from the latent birefringence in all-normal dispersion, wave-breaking-extended nonlinear fiber supercontinuum generation

Scott R. Domingue and Randy A. Bartels  »View Author Affiliations

Optics Express, Vol. 21, Issue 11, pp. 13305-13321 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1729 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The intrinsic weak birefringence in all-normal dispersion highly nonlinear fiber, particularly ultra-high-numerical-aperture fiber, generates supercontinuum with long term polarization instabilities, even for seed pulses launched along the perceived slow axis of the fiber. Highly co/anti-correlated fluctuations in energy between regions of power spectral density mask the extent of the spectral noise in total integrated power measurements. The instability exhibits a seed pulse power threshold above which the output polarization state of the supercontinuum seeds from noise. Eliminating this instability through the utilization of nonlinear fiber with a large designed birefringence, encourages the exploration of compression schemes and seed sources. Here, we include an analysis of the difficulties for seeding supercontinuum with the highly attractive ANDi-type lasers. Lastly, we introduce an intuitive approach for understanding supercontinuum development and evolution. By modifying the traditional characteristic dispersion and nonlinear lengths to track pulse properties within the nonlinear fiber, we find simple, descriptive handles for supercontinuum evolution.

© 2013 OSA

OCIS Codes
(060.2420) Fiber optics and optical communications : Fibers, polarization-maintaining
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(320.5520) Ultrafast optics : Pulse compression
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Ultrafast Optics

Original Manuscript: November 1, 2012
Manuscript Accepted: May 2, 2013
Published: May 24, 2013

Scott R. Domingue and Randy A. Bartels, "Overcoming temporal polarization instabilities from the latent birefringence in all-normal dispersion, wave-breaking-extended nonlinear fiber supercontinuum generation," Opt. Express 21, 13305-13321 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78, 1135–1184 (2006). [CrossRef]
  2. A. Heidt, J. Rothhardt, A. Hartung, H. Bartelt, E. Rohwer, J. Limpert, and A. Tnnermann, “High quality sub-two cycle pulses from compression of supercontinuum generated in all-normal dispersion photonic crystal fiber,” Opt. Express19, 13873–13879 (2011). [CrossRef] [PubMed]
  3. A. Heidt, A. Hartung, G. Bosman, P. Krok, E. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express19, 3775–3787 (2011). [CrossRef] [PubMed]
  4. P. Champert, V. Couderc, P. Leproux, S. Fvrier, V. Tombelaine, L. Labont, P. Roy, C. Froehly, and P. Nrin, “White-light supercontinuum generation in normally dispersive optical fiber using original multi-wavelength pumping system,” Opt. Express12, 4366–4371 (2004). [CrossRef] [PubMed]
  5. L. Hooper, P. Mosley, A. Muir, W. Wadsworth, and J. Knight, “Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion,” Opt. Express19, 4902–4907 (2011). [CrossRef] [PubMed]
  6. H. Tu, Y. Liu, X. Liu, D. Turchinovich, J. Lgsgaard, and S. Boppart, “Nonlinear polarization dynamics in a weakly birefringent all-normal dispersion photonic crystal fiber: toward a practical coherent fiber supercontinuum laser,” Opt. Express20, 1113–1128 (2012). [CrossRef] [PubMed]
  7. Y. Liu, H. Tu, and S. Boppart, “Wave-breaking-extended fiber supercontinuum generation for high compression ratio transform-limited pulse compression,” Opt. Lett.37, 2172–2174 (2012). [CrossRef] [PubMed]
  8. D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, “Study of an ultrahigh-numerical-aperture fiber continuum generation source for optical coherence tomography,” Opt. Lett.27, 2010–2012 (2007). [CrossRef] [PubMed]
  9. H. G. Winful, “Self-induced polarization changes in birefringent optical fiber,” Appl. Phys. Lett.47, 213–215 (1986). [CrossRef]
  10. S. Wabnitz, “Modulation polarization instability of light in a nonlinear birefringent dispersive medium,” Phys. Rev. A38, 2018–2021 (1988). [CrossRef] [PubMed]
  11. Z. Zhu and T. Brown, “Polarization properties of supercontinuum spectra generated in birefringent photonic crystal fibers,” J. Opt. Soc. Am. B21, 249–257 (2004). [CrossRef]
  12. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express14, 10095–10100 (2006). [CrossRef] [PubMed]
  13. C. Finot, B. Kibler, L. Provost, and S. Wabnitz, “Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers,” J. Opt. Soc. Am. B25, 1938–1948 (2008). [CrossRef]
  14. R. W. Boyd, Nonlinear Optics (Academic, NY, 2003).
  15. G. Clay, A. Millard, C. Schaffer, J. Aus-der-Au, P. Tsai, J. Squier, and D. Kleinfeld, “Spectroscopy of third-harmonic generation: evidence for resonances in model compounds and ligated hemoglobin,” J. Opt. Soc. Am. B23, 932–950 (2006). [CrossRef]
  16. D. J. Kane, “Principal components generalized projections,” J. Opt. Soc. Am. B25, A120–A132 (2008). [CrossRef]
  17. H. Tu, D. Marks, Y. Koh, and S. Boppart, “Stabilization of continuum generation from normally dispersive nonlinear optical fibers for a tunable broad bandwidth source for optical coherence tomography,” Opt. Lett.32, 2037–2039 (2007). [CrossRef] [PubMed]
  18. S. Murdoch, R. Leonhardt, and J. Harvey, “Polarization modulation instability in weakly birefringent fibers,” Opt. Lett.20, 866–868 (1995). [CrossRef] [PubMed]
  19. J. Wilson, P. Schlup, and R. Bartels, “Ultrafast phase and amplitude pulse shaping with a single, one-dimensional, high-resolution phase mask,” Opt. Express15, 8979–8987 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited