OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 11 — Jun. 3, 2013
  • pp: 13386–13393

Tunable coupling-induced transparency band due to coupled localized electric resonance and quasiguided photonic mode in hybrid plasmonic system

Jietao Liu, Binzong Xu, Haifeng Hu, Jing Zhang, Xin Wei, Yun Xu, and Guofeng Song  »View Author Affiliations


Optics Express, Vol. 21, Issue 11, pp. 13386-13393 (2013)
http://dx.doi.org/10.1364/OE.21.013386


View Full Text Article

Acrobat PDF (3129 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A numerical and theoretical study is presented on the exhibition of tunable narrow band coupled-induced transparency phenomenon in a hybrid waveguide-plasmon system consisting of gold twin nanowires array embedded in a slab waveguide. We show that, at slightly non-normal incidence, a properly designed splitting of transmission with narrow transparency peaks may occur at a given wavelength, depending on the angle of incidence. This leads to the wavelength-selective high quality coupled-induced transparency resonance at optical frequencies. By adjusting the gap distance of the pair gratings, the coupled-induced transparency band can be switched between on-state and off-state, which provides us possibilities to develop controllable plasmonic functional devices employing plasmonic nanostructures.

© 2013 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Optics at Surfaces

History
Original Manuscript: March 6, 2013
Revised Manuscript: May 6, 2013
Manuscript Accepted: May 19, 2013
Published: May 28, 2013

Citation
Jietao Liu, Binzong Xu, Haifeng Hu, Jing Zhang, Xin Wei, Yun Xu, and Guofeng Song, "Tunable coupling-induced transparency band due to coupled localized electric resonance and quasiguided photonic mode in hybrid plasmonic system," Opt. Express 21, 13386-13393 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-11-13386


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  2. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006). [CrossRef] [PubMed]
  3. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B58(11), 6779–6782 (1998). [CrossRef]
  4. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8(9), 758–762 (2009). [CrossRef] [PubMed]
  5. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett.10(4), 1103–1107 (2010). [CrossRef] [PubMed]
  6. T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B80(19), 195415 (2009). [CrossRef]
  7. V. Yannopapas, E. Paspalakis, and N. V. Vitanov, “Electromagnetically induced transparency and slow light in an array of metallic nanoparticles,” Phys. Rev. B80(3), 035104 (2009). [CrossRef]
  8. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter14(18), R597–R624 (2002). [CrossRef]
  9. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008). [CrossRef] [PubMed]
  10. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005). [CrossRef] [PubMed]
  11. X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater.7(6), 435–441 (2008). [CrossRef] [PubMed]
  12. V. Yannopapas, “Subwavelength imaging of light by arrays of metal-coated semiconductor nanoparticles: a theoretical study,” J. Phys. Condens. Matter20(25), 255201 (2008). [CrossRef]
  13. V. M. Shalaev, W. S. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett.30(24), 3356–3358 (2005). [CrossRef] [PubMed]
  14. V. Yannopapas, “Negative refractive index in the near-UV from Au-coated CuCl nanoparticle superlattices,” Phys. Status Solidi1(5), 208–210 (2007) (RRL). [CrossRef]
  15. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455(7211), 376–379 (2008). [CrossRef] [PubMed]
  16. G. Gantzounis, N. Stefanou, and V. Yannopapas, “Optical properties of a periodic monolayer of metallic nanospheres on a dielectric waveguide,” J. Phys. Condens. Matter17(12), 1791–1802 (2005). [CrossRef]
  17. V. Yannopapas and N. Stefanou, “Optical excitation of coupled waveguide-particle plasmon modes: a theoretical analysis,” Phys. Rev. B69(1), 012408 (2004). [CrossRef]
  18. A. Artar, A. A. Yanik, and H. Altug, “Multispectral plasmon induced transparency in coupled meta-atoms,” Nano Lett.11(4), 1685–1689 (2011). [CrossRef] [PubMed]
  19. J. Zhang, W. Bai, L. Cai, Y. Xu, G. Song, and Q. Gan, “Observation of ultra-narrow band plasmon induced transparency based on large-area hybrid plasmon-waveguide systems,” Appl. Phys. Lett.99(18), 181120 (2011). [CrossRef]
  20. X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett.101(14), 143105 (2012). [CrossRef]
  21. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  22. T. Baba, “Slow light in photonic crystals,” Nat. Photonics2(8), 465–473 (2008). [CrossRef]
  23. A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: Experiment and numerical calculations,” Phys. Rev. B74(15), 155435 (2006). [CrossRef]
  24. M. Geiselmann, T. Utikal, M. Lippitz, and H. Giessen, “Tailoring the ultrafast dynamics of the magnetic mode in magnetic photonic crystals,” Phys. Rev. B81(23), 235101 (2010). [CrossRef]
  25. A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures:” Phys. Rev. B70(12), 125113 (2004). [CrossRef]
  26. S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B66(4), 045102 (2002). [CrossRef]
  27. C. J. Tang, P. Zhan, Z. S. Cao, J. Pan, Z. Chen, and Z. L. Wang, “Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials,” Phys. Rev. B83(4), 041402 (2011). [CrossRef]
  28. H. Liu, X. Sun, Y. Pei, F. Yao, and Y. Jiang, “Enhanced magnetic response in a gold nanowire pair array through coupling with Bloch surface waves,” Opt. Lett.36(13), 2414–2416 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited