OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 11 — Jun. 3, 2013
  • pp: 13402–13407

Long distance fiber Bragg grating strain sensor interrogation using a high speed Raman-based Fourier domain mode-locked fiber laser with recycled residual Raman pump

Sunduck Kim, Oh-Jang Kwon, Hyeong-Seok Lee, Chang-Seok Kim, and Young-Geun Han  »View Author Affiliations

Optics Express, Vol. 21, Issue 11, pp. 13402-13407 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1214 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a novel fiber Bragg grating (FBG) sensor interrogation using a Raman-based Fourier-domain mode locking (FDML) fiber laser for a high speed and long distance measurement. A residual Raman pump after the generation of the Raman-based FDML fiber laser is recycled for secondary signal amplification in a 2-m erbium-doped fiber (EDF) to further enhance the output power. The chromatic dispersion is precisely controlled to suppress the phase noise in the FDML laser cavity, resulting in the improvement of an R-number of 1.43 mm/dB. After recycling residual pump, we achieve the 40-km round trip transmission of the sensing probe signal with a high scan rate of 30.8 kHz. With 205-mW residual pump power, the bandwidth and the maximum gain are measured to be more than 50 nm, 10.3 dB at 1550 nm, respectively. The sensitivity of the proposed Raman-based FDML fiber laser to strain is also measured, which are 0.81 pm/╬╝strain in the spectral domain and 0.19 ns/╬╝strain in the time domain, respectively.

© 2013 OSA

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(140.3510) Lasers and laser optics : Lasers, fiber
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:

Original Manuscript: April 10, 2013
Revised Manuscript: May 20, 2013
Manuscript Accepted: May 21, 2013
Published: May 28, 2013

Sunduck Kim, Oh-Jang Kwon, Hyeong-Seok Lee, Chang-Seok Kim, and Young-Geun Han, "Long distance fiber Bragg grating strain sensor interrogation using a high speed Raman-based Fourier domain mode-locked fiber laser with recycled residual Raman pump," Opt. Express 21, 13402-13407 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997). [CrossRef]
  2. C. S. Park, K. I. Joo, S. W. Kang, and H. R. Kim, “A PDMS-Coated Optical Fiber Bragg Grating Sensor for Enhancing Temperature Sensitivity,” J. Opt. Soc. Korea15(4), 329–334 (2011). [CrossRef]
  3. Y. G. Han, “Directional bending sensor with temperature-insensitivity based on a sampled chirped fiber Bragg grating,” J. Appl. Phys. 105, 063103 (2009).
  4. C. M. Jewart, T. Chen, E. Lindner, J. Fiebrandt, M. Rothhardt, K. Schuster, J. Kobelke, H. Bartelt, and K. P. Chen, “Suspended-core fiber Bragg grating sensor for directional-dependent transverse stress monitoring,” Opt. Lett.36(12), 2360–2362 (2011). [CrossRef] [PubMed]
  5. M. Moccia, M. Pisco, A. Cutolo, V. Galdi, P. Bevilacqua, and A. Cusano, “Opto-acoustic behavior of coated fiber Bragg gratings,” Opt. Express19(20), 18842–18860 (2011). [CrossRef] [PubMed]
  6. A. D. Kersey, T. A. Berkoff, and W. W. Morey, “High-resolution fibre-grating based strain sensor with interferometric wavelength-shift detection,” Electron. Lett.28(3), 236–238 (1992). [CrossRef]
  7. A. D. Kersey, T. A. Berkoff, and W. W. Morey, “Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter,” Opt. Lett.18(16), 1370–1372 (1993). [CrossRef] [PubMed]
  8. S. M. Melle, K. Liu, and R. M. Measures, “A passive wavelength demodulation system for guided-wave Bragg grating snesors,” IEEE Photon. Technol. Lett.4(5), 516–518 (1992). [CrossRef]
  9. S. Y. Ryu and C. S. Hong, “Development of fiber Bragg grating sensor system using wavelength-swept fiber laser,” Smart Mater. Struct.11(3), 468–473 (2002). [CrossRef]
  10. R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express13(9), 3513–3528 (2005). [CrossRef] [PubMed]
  11. E. J. Jung, C. S. Kim, M. Y. Jeong, M. K. Kim, M. Y. Jeon, W. Jung, and Z. Chen, “Characterization of FBG sensor interrogation based on a FDML wavelength swept laser,” Opt. Express16(21), 16552–16560 (2008). [PubMed]
  12. T. Klein, W. Wieser, B. R. Biedermann, C. M. Eigenwillig, G. Palte, and R. Huber, “Raman-pumped Fourier-domain mode-locked laser: analysis of operation and application for optical coherence tomography,” Opt. Lett.33(23), 2815–2817 (2008). [CrossRef] [PubMed]
  13. B. R. Biedermann, W. Wieser, C. M. Eigenwillig, T. Klein, and R. Huber, “Dispersion, coherence and noise of Fourier domain mode locked lasers,” Opt. Express17(12), 9947–9961 (2009). [CrossRef] [PubMed]
  14. Y. Nakajima, Y. Shindo, and T. Yoshikama, “Novel concept as long-distance transmission FBG sensor system using distributed Raman amplifier,” in Proc. 16th International Conference on Optical Fiber Sensors (Nara Japan, October 2003), Th1–4.
  15. J. J. Fu, W. S. Liu, D. Chen, and S. He, “Ultra-long-distance FBG sensor system based on spectrum-limited Fourier domain mode locking fibre laser with Raman pumps,” Electron. Lett.44(16), 961–963 (2008). [CrossRef]
  16. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express14(8), 3225–3237 (2006). [CrossRef] [PubMed]
  17. J. H. Lee, Y. M. Chang, Y. G. Han, H. Chung, S. H. Kim, and S. B. Lee, “Raman amplifier-based long-distance remote, strain and temperature sensing system using an erbium-doped fiber and a fiber Bragg grating,” Opt. Express12(15), 3515–3520 (2004). [CrossRef] [PubMed]
  18. J. Hu, Z. Chen, and C. Yu, “150-km long distance FBG temperature and vibration sensor system based on stimulated Raman amplification,” J. Lightwave Technol.30(8), 1237–1243 (2012). [CrossRef]
  19. Y. G. Han, T. V. A. Tran, S. H. Kim, and S. B. Lee, “Multiwavelength Raman-fiber-laser-based long-distance remote sensor for simultaneous measurement of strain and temperature,” Opt. Lett.30(11), 1282–1284 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited