OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 11 — Jun. 3, 2013
  • pp: 13419–13424

Ampere force based magnetic field sensor using dual-polarization fiber laser

Linghao Cheng, Zhenzhen Guo, Jianlei Han, Long Jin, and Bai-Ou Guan  »View Author Affiliations


Optics Express, Vol. 21, Issue 11, pp. 13419-13424 (2013)
http://dx.doi.org/10.1364/OE.21.013419


View Full Text Article

Enhanced HTML    Acrobat PDF (897 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A magnetic field sensor is proposed by placing a dual-polarization fiber grating laser under a copper wire. With a perpendicular magnetic field applied, an electrical current flowing through the copper wire can generate Ampere force to squeeze the fiber grating laser, resulting in the birefringence change inside the laser cavity and hence the change of the beat note frequency. When an alternating current is injected into the copper wire, the magnetic field induced beat note frequency change can be discriminated from environment disturbances. A novel fiber-optic magnetic field sensor is therefore demonstrated with high sensitivity and inherent immunity to disturbances.

© 2013 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(280.3420) Remote sensing and sensors : Laser sensors

ToC Category:
Sensors

History
Original Manuscript: April 15, 2013
Revised Manuscript: May 18, 2013
Manuscript Accepted: May 19, 2013
Published: May 28, 2013

Citation
Linghao Cheng, Zhenzhen Guo, Jianlei Han, Long Jin, and Bai-Ou Guan, "Ampere force based magnetic field sensor using dual-polarization fiber laser," Opt. Express 21, 13419-13424 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-11-13419


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Cheng, J. Han, Z. Guo, L. Jin, and B.-O. Guan, “Faraday-rotation-based miniature magnetic field sensor using polarimetric heterodyning fiber grating laser,” Opt. Lett.38(5), 688–690 (2013). [CrossRef] [PubMed]
  2. M. Yang, J. Dai, C. Zhou, and D. Jiang, “Optical fiber magnetic field sensors with TbDyFe magnetostrictive thin films as sensing materials,” Opt. Express17(23), 20777–20782 (2009). [CrossRef] [PubMed]
  3. B.-O. Guan and S.-N. Wang, “Fiber grating laser current sensor based on magnetic force,” IEEE Photon. Technol. Lett.22(4), 230–232 (2010). [CrossRef]
  4. G. A. Cranch, G. M. H. Flockhart, and C. K. Kirkendall, “High-resolution distributed-feedback fiber laser dc magnetometer based on the Lorentzian force,” Meas. Sci. Technol.20(3), 034023 (2009). [CrossRef]
  5. J. Noda, T. Hosaka, Y. Sasaki, and R. Ulrich, “Dispersion of Verdet constant in stress-birefringent silica fibre,” Electron. Lett.20(22), 906–907 (1984). [CrossRef]
  6. T. Yoshino, T. Hashimoto, M. Nara, and K. Kurosawa, “Common path heterodyne optical fiber sensors,” J. Lightwave Technol.10(4), 503–513 (1992). [CrossRef]
  7. C.-L. Tien, C.-C. Hwang, H.-W. Chen, W. F. Liu, and S.-W. Lin, “Magnetic sensor based on side-polished fiber Bragg grating coated with iron film,” IEEE Trans. Magn.42(10), 3285–3287 (2006). [CrossRef]
  8. A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Interferometric current sensors using optical fibers,” Electron. Lett.17(15), 523–525 (1981). [CrossRef]
  9. C. T. Shyu and L. Wang, “Sensitive linear electric current measurement using two metal-coated single-mode fibers,” J. Lightwave Technol.12(11), 2040–2048 (1994). [CrossRef]
  10. S. Jin, H. Mavoori, R. P. Espindola, L. E. Adams, and T. A. Strasser, “Magnetically tunable fiber Bragg gratings,” in Proc. OFC’99, San Diego, CA, ThJ2, 135 – 137 (1999).
  11. J. Gong, C. C. Chan, M. Zhang, W. Jin, J. M. K. MacAlpine, and Y. B. Liao, “Fiber Bragg grating current sensor using linear magnetic actuator,” Opt. Eng.41(3), 557–558 (2002). [CrossRef]
  12. B.-O. Guan, L. Jin, Y. Zhang, and H.-Y. Tam, “Polarimetric heterodyning fiber grating laser sensors,” J. Lightwave Technol.30(8), 1097–1112 (2012). [CrossRef]
  13. Y. Zhang, B.-O. Guan, and H. Y. Tam, “Ultra-short distributed Bragg reflector fiber laser for sensing applications,” Opt. Express17(12), 10050–10055 (2009). [CrossRef] [PubMed]
  14. K. S. Chiang, R. Kancheti, and V. Rastogi, “Temperature-compensated fiber-Bragg-grating-based magnetostrictive sensor for dc and ac currents,” Opt. Eng.42(7), 1906–1909 (2003). [CrossRef]
  15. R. Gafsi and M. A. El-Sherif, “Analysis of induced-birefringence effects on fiber Bragg gratings,” Opt. Fiber Technol.6(3), 299–323 (2000). [CrossRef]
  16. Y.-N. Tan, L. Jin, L. Cheng, Z. Quan, M. Li, and B.-O. Guan, “Multi-octave tunable RF signal generation based on a dual-polarization fiber grating laser,” Opt. Express20(7), 6961–6967 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited