OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 11 — Jun. 3, 2013
  • pp: 13450–13458

Direct characterization of linear-optical networks

Saleh Rahimi-Keshari, Matthew A. Broome, Robert Fickler, Alessandro Fedrizzi, Timothy C. Ralph, and Andrew G. White  »View Author Affiliations

Optics Express, Vol. 21, Issue 11, pp. 13450-13458 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2665 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce an efficient method for fully characterizing multimode linear-optical networks. Our approach requires only a standard laser source and intensity measurements to directly and uniquely determine all moduli and non-trivial phases of the matrix describing a network. We experimentally demonstrate the characterization of a 6×6 fiber-optic network and independently verify the results via nonclassical two-photon interference.

© 2013 OSA

OCIS Codes
(220.4840) Optical design and fabrication : Testing
(230.0230) Optical devices : Optical devices
(270.0270) Quantum optics : Quantum optics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: March 14, 2013
Revised Manuscript: May 10, 2013
Manuscript Accepted: May 16, 2013
Published: May 28, 2013

Saleh Rahimi-Keshari, Matthew A. Broome, Robert Fickler, Alessandro Fedrizzi, Timothy C. Ralph, and Andrew G. White, "Direct characterization of linear-optical networks," Opt. Express 21, 13450-13458 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett.73, 58–61 (1994). [CrossRef] [PubMed]
  2. J. L. O’Brien, G. J. Pryde, A. Gilchrist, D. F. V. James, N. K. Langford, T. C. Ralph, and A. G. White, “Quantum process tomography of a controlled-NOT gate,” Phys. Rev. Lett.93, 080502 (2004). [CrossRef]
  3. A. M. Childs, I. L. Chuang, and D. W. Leung, “Realization of quantum process tomography in NMR,” Phys. Rev. A64, 012314 (2001). [CrossRef]
  4. M. W. Mitchell, C. W. Ellenor, S. Schneider, and A. M. Steinberg, “Diagnosis, prescription, and prognosis of a Bell-state filter by quantum process tomography,” Phys. Rev. Lett.91, 120402 (2003). [CrossRef] [PubMed]
  5. M. Lobino, D. Korystov, C. Kupchak, E. Figueroa, B. C. Sanders, and A. I. Lvovsky, “Complete characterization of quantum-optical processes,” Science322, 563–566 (2008). [CrossRef] [PubMed]
  6. S. Rahimi-Keshari, A. Scherer, A. Mann, A. T. Rezakhani, A. I. Lvovsky, and B. C. Sanders, “Quantum process tomography with coherent states,” New J. Phys.13, 013006 (2011). [CrossRef]
  7. A. Shabani, R. L. Kosut, M. Mohseni, H. Rabitz, M. A. Broome, M. P. Almeida, A. Fedrizzi, and A. G. White, “Efficient measurement of quantum dynamics via compressive sensing,” Phys. Rev. Lett.106, 100401 (2011). [CrossRef] [PubMed]
  8. G. VanWiggeren and D. Baney, “Swept-wavelength interferometric analysis of multiport components,” IEEE Photon. Technol. Lett.15, 1267–1269 (2003). [CrossRef]
  9. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett.59, 20442046 (1987). [CrossRef]
  10. A. Peruzzo, A. Laing, A. Politi, T. Rudolph, and J. L. O’Brien, “Multimode quantum interference of photons in multiport integrated devices,” Nat. Commun.2, 224 (2011). [CrossRef] [PubMed]
  11. A. Laing and J. L. O’Brien, “Super-stable tomography of any linear optical device,” arXiv:1208.2868 (2012).
  12. A. Peres, “Construction of unitary matrices from observable transition probabilities,” Nucl. Phys. B6, 243245 (1989).
  13. H. J. Bernstein, “Must quantum theory assume unrestricted superposition?,” J. Math. Phys.15, 1677 (1974). [CrossRef]
  14. Y. Bromberg, Y. Lahini, R. Morandotti, and Y. Silberberg, “Quantum and classical correlations in waveguide lattices,” Phys. Rev. Lett.102, 253904 (2009). [CrossRef] [PubMed]
  15. R. Keil, A. Szameit, F. Dreisow, M. Heinrich, S. Nolte, and A. Tünnermann, “Photon correlations in two-dimensional waveguide arrays and their classical estimate,” Phys. Rev. A81, 023834 (2010). [CrossRef]
  16. C. Mattle, M. Michler, H. Weinfurter, A. Zeilinger, and M. Zukowski, “Non-classical statistics at multiport beam splitters,” Appl. Phys. B60, S111–S117 (1995).
  17. K. Fan and A. J. Hoffman, “Some metric inequalities in the space of matrices,” Proc. Amer. Math. Soc.6, 111–116 (1955). [CrossRef]
  18. B. P. Lanyon, T. J. Weinhold, N. K. Langford, M. Barbieri, D. F. V. James, A. Gilchrist, and A. G. White, “Experimental demonstration of a compiled version of Shor’s algorithm with quantum entanglement,” Phys. Rev. Lett.99, 250505 (2007). [CrossRef]
  19. B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, “Towards quantum chemistry on a quantum computer,” Nature Chemistry2, 106–111 (2010). [CrossRef] [PubMed]
  20. A. Schreiber, A. Gábris, P. P. Rohde, K. Laiho, M. Štefaňák, V. Potoček, C. Hamilton, I. Jex, and C. Silberhorn, “A 2D quantum walk simulation of two-particle dynamics,” Science336, 55–58 (2012). [CrossRef] [PubMed]
  21. A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. O’Brien, “Quantum walks of correlated photons,” Science329, 1500–1503 (2010). [CrossRef] [PubMed]
  22. L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Two-particle bosonicfermionic quantum walk via integrated photonics,” Phys. Rev. Lett.108, 010502 (2012). [CrossRef] [PubMed]
  23. J. O. Owens, M. A. Broome, D. N. Biggerstaff, M. E. Goggin, A. Fedrizzi, T. Linjordet, M. Ams, G. D. Marshall, J. Twamley, M. J. Withford, and A. G. White, “Two-photon quantum walks in an elliptical direct-write waveguide array,” New J. Phys.13, 075003 (2011). [CrossRef]
  24. S. Aaronson and A. Arkhipov, “The computational complexity of linear optics,” Proc. ACM Symposium on Theory of Computing, San Jose, CA pp. 333–342 (2011).
  25. M. A. Broome, A. Fedrizzi, S. Rahimi-Keshari, J. Dove, S. Aaronson, T. C. Ralph, and A. G. White, “Photonic boson sampling in a tunable circuit,” Science339, 794–798 (2013). [CrossRef]
  26. J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-Min Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling in a photonic chip,” Science339, 798–801 (2013). [CrossRef]
  27. B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. C. Humphreys, X. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, and I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nature Communications4, 1356 (2013). [CrossRef]
  28. A. Sharkawy, S. Shi, D. Prather, and R. Soref, “Electro-optical switching using coupled photonic crystal waveguides,” Opt. Express10, 1048–1059 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited