OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 11 — Jun. 3, 2013
  • pp: 13479–13491

Plasmonic gap-mode nanocavities with metallic mirrors in high-index cladding

Pi-Ju Cheng, Chen-Ya Weng, Shu-Wei Chang, Tzy-Rong Lin, and Chung-Hao Tien  »View Author Affiliations

Optics Express, Vol. 21, Issue 11, pp. 13479-13491 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1141 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We theoretically analyze plasmonic gap-mode nanocavities covered by a thick cladding layer at telecommunication wavelengths. In the presence of high-index cladding materials such as semiconductors, the first-order hybrid gap mode becomes more promising for lasing than the fundamental one. Still, the significant mirror loss remains the main challenge to lasing. Using silver coatings within a decent thickness range at two end facets, we show that the reflectivity is substantially enhanced above 95 %. At a coating thickness of 50 nm and cavity length of 1.51 μm, the quality factor is about 150, and the threshold gain is lower than 1500 cm−1.

© 2013 OSA

OCIS Codes
(140.3410) Lasers and laser optics : Laser resonators
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(250.5960) Optoelectronics : Semiconductor lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 22, 2013
Revised Manuscript: May 6, 2013
Manuscript Accepted: May 21, 2013
Published: May 29, 2013

Pi-Ju Cheng, Chen-Ya Weng, Shu-Wei Chang, Tzy-Rong Lin, and Chung-Hao Tien, "Plasmonic gap-mode nanocavities with metallic mirrors in high-index cladding," Opt. Express 21, 13479-13491 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. A.  Schuller, E. S.  Barnard, W.  Cai, Y. C.  Jun, J. S.  White, M. L.  Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Mater. 9, 193–204 (2010). [CrossRef]
  2. M. T.  Hill, “Status and prospects for metallic and plasmonic nano-lasers [invited],” J. Opt. Soc. B 27, B36–B44 (2010). [CrossRef]
  3. R. M.  Ma, R. F.  Oulton, V. J.  Sorger, X.  Zhang, “Plasmon lasers: coherent light source at molecular scales,” Laser & Photon. Rev. 7, 1–21 (2013).
  4. M.  Lončar, A.  Scherer, Y.  Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648–4650 (2003). [CrossRef]
  5. Y.  Nakayama, P. J.  Pauzauskie, A.  Radenovic, R. M.  Onorato, R. J.  Saykally, J.  Liphardt, P.  Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007). [CrossRef] [PubMed]
  6. R. G.  Beausoleil, P. J.  Kuekes, G. S.  Snider, S. Y.  Wang, R. S.  Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96, 230–247 (2008). [CrossRef]
  7. M. T.  Hill, Y. S.  Oei, B.  Smalbrugge, Y.  Zhu, T.  de Vries, P. J.  van Veldhoven, F. W. M.  van Otten, T. J.  Eijkemans, J. P.  Turkiewicz, H.  de Waardt, E. J.  Geluk, S. H.  Kwon, Y. H.  Lee, R.  Nötzel, M. K.  Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007). [CrossRef]
  8. M. T.  Hill, M.  Marell, E. S. P.  Leong, B.  Smalbrugge, Y.  Zhu, M.  Sun, P. J.  van Veldhoven, E. J.  Geluk, F.  Karouta, Y. S.  Oei, R.  Nötzel, C. Z.  Ning, M. K.  Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009). [CrossRef] [PubMed]
  9. M. A.  Noginov, G.  Zhu, A. M.  Belgrave, R.  Bakker, V. M.  Shalaev, E. E.  Narimanov, S.  Stout, E.  Herz, T.  Suteewong, U.  Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009). [CrossRef] [PubMed]
  10. R. F.  Oulton, V. J.  Sorger, T.  Zentgraf, R. M.  Ma, C.  Gladden, L.  Dai, G.  Bartal, X.  Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009). [CrossRef] [PubMed]
  11. C. Y.  Lu, S. W.  Chang, S. L.  Chuang, T. D.  Germann, D.  Bimberg, “Metal-cavity surface-emitting microlaser at room temperature,” Appl. Phys. Lett. 96, 251101 (2010). [CrossRef]
  12. S. H.  Kwon, J. H.  Kang, C.  Seassal, S. K.  Kim, P.  Regreny, Y. H.  Lee, C. M.  Lieber, H. G.  Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett. 10, 3679–3683 (2010). [CrossRef] [PubMed]
  13. R. M.  Ma, R. F.  Oulton, V. J.  Sorger, G.  Bartal, X.  Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nature Mater. 10, 110–113 (2011). [CrossRef]
  14. R. A.  Flynn, C. S.  Kim, I.  Vurgaftman, M.  Kim, J. R.  Meyer, A. J.  Mak̈inen, K.  Bussmann, L.  Cheng, F. S.  Choa, J. P.  Long, “A room-temperature semiconductor spaser operating near 1.5 μm,” Opt. Express 19, 8954–8961 (2011). [CrossRef] [PubMed]
  15. M. J. H.  Marell, B.  Smalbrugge, E. J.  Geluk, P. J.  van Veldhoven, B.  Barcones, B.  Koopmans, R.  Nötzel, M. K.  Smit, M. T.  Hill, “Plasmonic distributed feedback lasers at telecommunications wavelengths,” Opt. Express 19, 15109–15118 (2011). [CrossRef] [PubMed]
  16. A. M.  Lakhani, M. K.  Kim, E. K.  Lau, M. C.  Wu, “Plasmonic crystal defect nanolaser,” Opt. Express 19, 18237–18245 (2011). [CrossRef] [PubMed]
  17. C. Y.  Wu, C. T.  Kuo, C. Y.  Wang, C. L.  He, M. H.  Lin, H.  Ahn, S.  Gwo, “Plasmonic green nanolaser based on a metal-oxide-semiconductor structure,” Nano Lett. 11, 4256–4260 (2011). [CrossRef] [PubMed]
  18. K. J.  Russell, T. L.  Liu, S.  Cui, E. L.  Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6, 459–462 (2012). [CrossRef]
  19. K. J.  Russell E. L.  Hu, “Gap-mode plasmonic nanocavity,” Appl. Phys. Lett. 97, 163115 (2010). [CrossRef]
  20. C. Y.  Lu, S. W.  Chang, S. L.  Chuang, T. D.  Germann, U. W.  Pohl, D.  Bimberg, “Low thermal impedance of substrate-free metal cavity surface-emitting microlasers,” IEEE Photon. Technol. Lett. 23, 1031–1033 (2011). [CrossRef]
  21. R. F.  Oulton, V. J.  Sorger, D. A.  Genov, D. F. P.  Pile, X.  Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008). [CrossRef]
  22. P. J.  Cheng, C. Y.  Weng, S. W.  Chang, T. R.  Lin, C. H.  Tien, “Cladding effect on hybrid plasmonic nanowire cavity at telecommunication wavelengths,” IEEE J. Sel. Top. Quantum Electron. 19, 4800306 (2013). [CrossRef]
  23. J.  Grandidier, G. C.  des Francs, S.  Massenot, A.  Bouhelier, L.  Markey, J.-C.  Weeber, C.  Finot, A.  Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009). [CrossRef] [PubMed]
  24. D.  Dai, Y.  Shi, S.  He, L.  Wosinski, L.  Thylen, “Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium,” Opt. Express 19, 12925–12936 (2011). [CrossRef] [PubMed]
  25. M.  Ozeki, “Atomic layer epitaxy of III–V compounds using metalorganic and hydride sources,” Mater. Sci. Rep. 8, 97–146 (1992). [CrossRef]
  26. S. M.  George, “Atomic layer deposition: an overview,” Chem. Rev. 110, 111–131 (2010). [CrossRef]
  27. D. P.  Arnold, F.  Cros, I.  Zana, D. R.  Veazie, M. G.  Allen, “Electroplated metal microstructures embedded in fusion-bonded silicon: conductors and magnetic materials,” J. Microelectromech. Syst. 13, 791–798 (2004). [CrossRef]
  28. S. W.  Chang, T. R.  Lin, S. L.  Chuang, “Theory of plasmonic Fabry-Perot nanolasers,” Opt. Express 18, 15039–15053 (2010). [CrossRef] [PubMed]
  29. A.  Yariv P.  Yeh, Optical Waves in Crystals (Wiley and Sons, Hoboken, NJ, 1997).
  30. P. B.  Johnson R. W.  Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  31. COMSOL Multiphysics, http://www.comsol.com .
  32. S.  Zhang H.  Xu, “Optimizing substrate-mediated plasmon coupling toward high-performance plasmonic nanowire waveguides,” ACS Nano 6, 8128–8135 (2012). [CrossRef] [PubMed]
  33. T. R.  Lin, S. W.  Chang, S. L.  Chuang, Z.  Zhang, P. J.  Schuck, “Coating effect on optical resonance of plasmonic nanobowtie antenna,” Appl. Phys. Lett. 97, 063106 (2010). [CrossRef]
  34. T. D.  Visser, H.  Blok, B.  Demeulenaere, D.  Lenstra, “Confinement factors and gain in optical amplifiers,” IEEE J. Quantum Electron. 33, 1763–1766 (1997). [CrossRef]
  35. A. V.  Maslov C. Z.  Ning, “Modal gain in a semiconductor nanowire laser with anisotropic bandstructure,” IEEE. J. Quantum Electron. 40, 1389–1397 (2004). [CrossRef]
  36. S. W.  Chang S. L.  Chuang, “Fundamental formulation for plasmonic nanolasers,” IEEE J. Quantum Electron. 45, 1014–1023 (2009). [CrossRef]
  37. C. Y.  Lu S. L.  Chuang, “A surface-emitting 3D metal-nanocavity laser: proposal and theory,” Opt. Express 19, 13225–13244 (2011). [CrossRef] [PubMed]
  38. C.  Manolatou F.  Rana, “Subwavelength nanopatch cavities for semiconductor plasmon lasers,” IEEE J. Quantum Electron. 44, 435–447 (2008). [CrossRef]
  39. A.  Mock, “First principles derivation of microcavity semiconductor laser threshold condition and its application to FDTD active cavity modeling,” J. Opt. Soc. Am. B 27, 2262–2272 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited