OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 11 — Jun. 3, 2013
  • pp: 13492–13501

Surface-plasmon-enhanced GaN-LED based on a multilayered M-shaped nano-grating

Haosu Zhang, Jun Zhu, Zhendong Zhu, Yuanhao Jin, Qunqing Li, and Guofan Jin  »View Author Affiliations


Optics Express, Vol. 21, Issue 11, pp. 13492-13501 (2013)
http://dx.doi.org/10.1364/OE.21.013492


View Full Text Article

Enhanced HTML    Acrobat PDF (1307 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A multilayered metallic M-shaped nano-grating is proposed to enhance the internal quantum efficiency, light extraction efficiency and surface-plasmon (SP) extraction efficiency of the gallium nitride-based light emitting diodes. This structure is fabricated by the low-cost nano-imprint lithography. The suitable grating based on quasi-symmetrical-waveguide structure has a high transmission in the visible region. The properties of SP mode and the Purcell effect in this type of LED is investigated. The experimental results demonstrate that its peak photoluminescence intensity of the proposed LED is over 10 times greater than that from a naked GaN-LED without any nanostructure.

© 2013 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(230.3670) Optical devices : Light-emitting diodes
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(250.5230) Optoelectronics : Photoluminescence

ToC Category:
Optical Devices

History
Original Manuscript: February 25, 2013
Revised Manuscript: April 27, 2013
Manuscript Accepted: May 20, 2013
Published: May 29, 2013

Citation
Haosu Zhang, Jun Zhu, Zhendong Zhu, Yuanhao Jin, Qunqing Li, and Guofan Jin, "Surface-plasmon-enhanced GaN-LED based on a multilayered M-shaped nano-grating," Opt. Express 21, 13492-13501 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-11-13492


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Nakamura and S. F. Chichibu, Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes, (Taylor & Francis, 2000).
  2. B.  Monemar, J. P.  Bergman, G.  Pozina, J.  Dalfors, B. E.  Sernelius, P. O.  Holtz, H.  Amano, I.  Akasaki, “Carrier and exciton dynamics in In0.15Ga0.85N/GaN multiple quantum well Structures,” Proc. SPIE 3624, 168–178 (1999). [CrossRef]
  3. X. S.  Zhang, S.  Liu, Y.  Liu, X. Y.  Chen, H.  Lin, X. C.  Ren, “Enhancement of LED light extraction via diffraction of hexagonal lattice fabricated in ITO layer with holographic lithography and wet etching,” Phys. Lett. A 372, 2738–3740 (2008).
  4. A.  Drezet, F.  Przybilla, E.  Laux, O.  Mahboub, C.  Genet, T. W.  Ebbesen, J. S.  Bouillard, A.  Zayats, I. S.  Spevak, A. V.  Zayats, A. Y.  Nikitin, L.  Martín-Moreno, “Opening the light extraction cone of high index substrates with plasmonic gratings: Light emitting diode applications,” Appl. Phys. Lett. 95(2), 021101 (2009). [CrossRef]
  5. T. J. Suleski and Y.-C. Chuang, “Nanotexturing in Ultraviolet Light-Emitting Diodes for Enhanced Light Extraction,” OSA/NANO (Optical Society of America, 2006) paper NWC2.
  6. D.-H.  Kim, C.-O.  Cho, Y.-G.  Roh, H.  Jeon, Y. S.  Park, J.  Cho, J. S.  Im, C.  Sone, Y.  Park, W. J.  Choi, Q.-H.  Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett. 87(20), 203508 (2005). [CrossRef]
  7. E. M.  Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  8. R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” in Advances in Chemical Physics, Vol. XXXVII, I. Prigogine and S. A. Rice, eds. (Wiley, 1978), pp. 1–66.
  9. G. W.  Ford W. H.  Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984). [CrossRef]
  10. N. E.  Hecker, R. A.  Hopfel, N.  Sawaki, “Enhanced light emission from a single quantum well located near a metal coated surface,” Physica E 2(1-4), 98–101 (1998). [CrossRef]
  11. I.  Gontijo, M.  Borodisky, E.  Yablonvitch, S.  Keller, U. K.  Mishra, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999). [CrossRef]
  12. A.  Neogi, C.-W.  Lee, H. O.  Everitt, T.  Kuroda, A.  Tackeuchi, E.  Yablonvitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66(15), 153305 (2002). [CrossRef]
  13. K.  Okamoto, I.  Niki, A.  Scherer, Y.  Narukawa, T.  Mukai, Y.  Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005). [CrossRef]
  14. K.  Okamoto, I.  Niki, A.  Shvartser, Y.  Narukawa, T.  Mukai, A.  Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004). [CrossRef] [PubMed]
  15. R.  Paiella, “Tunable surface plasmons in coupled metallo-dielectric multiple layers for light-emission efficiency enhancement,” Appl. Phys. Lett. 87(11), 111104 (2005). [CrossRef]
  16. J.  Chen, N.-H.  Shen, C.  Cheng, Y.-X.  Fan, J. P.  Ding, H.-T.  Wang, “Tunable resonance in surface-plasmon-polariton enhanced spontaneous emission using a denser dielectric cladding,” Appl. Phys. Lett. 89(5), 051916 (2006). [CrossRef]
  17. J.  Morland, A.  Adams, P. K.  Hansma, “Efficiency of light emission from surface plasmons,” Phys. Rev. B 25(4), 2297–2300 (1982). [CrossRef]
  18. J. M.  Lupton, B. J.  Matterson, I. D. W.  Samuel, M. J.  Jory, W. L.  Barnes, “Bragg scattering from periodically microstructured light emitting diodes,” Appl. Phys. Lett. 77(21), 3340–3342 (2000). [CrossRef]
  19. D.-M.  Yeh, C.-F.  Huang, C.-Y.  Chen, Y.-C.  Lu, C. C.  Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91(17), 171103 (2007). [CrossRef]
  20. I. R.  Hooper J. R.  Sambles, “Surface plasmon polaritons on thin-slab metal gratings,” Phys. Rev. B 67(23), 235404 (2003). [CrossRef]
  21. S.  Wedge W. L.  Barnes, “Surface plasmon-polariton mediated light emission through thin metal films,” Opt. Express 12(16), 3673–3685 (2004). [CrossRef] [PubMed]
  22. Y.-C.  Lu, Y.-S.  Chen, F.-J.  Tsai, J.-Y.  Wang, C.-H.  Lin, C.-Y.  Chen, Y.-W.  Kiang, C. C.  Yang, “Improving emission enhancement in surface plasmon coupling with an InGaN/GaN quantum well by inserting a dielectric layer of low refractive index between metal and semiconductor,” Appl. Phys. Lett. 94(23), 233113 (2009). [CrossRef]
  23. K.-C.  Shen, C.-H.  Liao, Z.-Y.  Yu, J.-Y.  Wang, C.-H.  Lin, Y.-W.  Kiang, C. C.  Yang, “Effects of the intermediate SiO2 layer on polarized output of a light-emitting diode with Surface plasmon coupling,” J. Appl. Phys. 108(11), 113101 (2010). [CrossRef]
  24. K.-C.  Shen, C.-Y.  Chen, C.-H.  Liao, T.-Y.  Tang, C. C.  Yang, “Enhancement of polarized light-emitting diode through surface plasmon coupling generated on a metal grating,” OSA/ACP (Optical Society of America, 2009). Paper TuN5.
  25. W.-H.  Chuang, J.-Y.  Wang, C. C.  Yang, Y.-W.  Kiang, “Differentiating the contributions between localized surface plasmon and surface plasmon polariton on a one-dimensional metal grating in coupling with a light emitter,” Appl. Phys. Lett. 92(13), 133115 (2008). [CrossRef]
  26. C.-W.  Shen, J.-Y.  Wang, W.-H.  Chuang, H.-L.  Chen, Y.-C.  Lu, Y.-W.  Kiang, C. C.  Yang, Y.-J.  Yang, “Effective energy coupling and preservation in a surface plasmon-light emitter coupling system on a metal nanostructure,” Nanotechnology 20(13), 135202 (2009). [CrossRef] [PubMed]
  27. Y. W.  Kiang, J. Y.  Wang, C. C.  Yang, “Numerical study on surface plasmon polariton behaviors in periodic metal-dielectric structures using a plane-wave-assisted boundary integral-equation method,” Opt. Express 15(14), 9048–9062 (2007). [CrossRef] [PubMed]
  28. A.  Bay, N.  André, M.  Sarrazin, A.  Belarouci, V.  Aimez, L. A.  Francis, J. P.  Vigneron, “Optimal overlayer inspired by Photuris firefly improves light-extraction efficiency of existing light-emitting diodes,” Opt. Express 21(S1Suppl 1), A179–A189 (2013). [CrossRef] [PubMed]
  29. L. F. Li, A User’s Guide to DELTA©(Version 1.4): A Computer Program for Modeling Planar, One-dimensionally Periodic, Multilayer-coated, Diffraction Gratings (Tsinghua University, Copyright 1993–2009
  30. J.  Chandezon, M. T.  Dupuis, G.  Cornet, D.  Maystre, “Multicoated gratings: a differential formalism applicable in the entire optical region,” J. Opt. Soc. Am. 72(7), 839–846 (1982). [CrossRef]
  31. J.  Chandezon, D.  Maystre, G.  Raoult, “A new theoretical method for diffraction gratings and its numerical application,” J. Opt. (Paris) 11(4), 235–241 (1980). [CrossRef]
  32. M. J. Weber, Handbook of Optical Materials (CRC Press, 2003).
  33. http://refractiveindex.info/?group=CRYSTALS&material=HfO2
  34. J. S.  Biteen, L. A.  Sweatlock, H.  Mertens, N. S.  Lewis, A.  Polman, H. A.  Atwater, “Plasmon-enhanced photoluminescence of silicon quantum dots: simulation and experiment,” J. Phys. Chem. C 111(36), 13372–13377 (2007). [CrossRef]
  35. J.  Henson, E.  Dimakis, J.  DiMaria, R.  Li, S.  Minissale, L.  Dal Negro, T. D.  Moustakas, R.  Paiella, “Enhanced near-green light emission from InGaN quantum wells by use of tunable plasmonic resonances in silver nanoparticle arrays,” Opt. Express 18(20), 21322–21329 (2010). [CrossRef] [PubMed]
  36. J.  Yoon, S. H.  Song, J.-H.  Kim, “Extraction efficiency of highly confined surface plasmon-polaritons to far-field radiation: an upper limit,” Opt. Express 16(2), 1269–1279 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited