OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 11 — Jun. 3, 2013
  • pp: 13522–13532

On-chip low loss heralded source of pure single photons

Justin B. Spring, Patrick S. Salter, Benjamin J. Metcalf, Peter C. Humphreys, Merritt Moore, Nicholas Thomas-Peter, Marco Barbieri, Xian-Min Jin, Nathan K. Langford, W. Steven Kolthammer, Martin J. Booth, and Ian A. Walmsley  »View Author Affiliations


Optics Express, Vol. 21, Issue 11, pp. 13522-13532 (2013)
http://dx.doi.org/10.1364/OE.21.013522


View Full Text Article

Enhanced HTML    Acrobat PDF (993 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A key obstacle to the experimental realization of many photonic quantum-enhanced technologies is the lack of low-loss sources of single photons in pure quantum states. We demonstrate a promising solution: generation of heralded single photons in a silica photonic chip by spontaneous four-wave mixing. A heralding efficiency of 40%, corresponding to a preparation efficiency of 80% accounting for detector performance, is achieved due to efficient coupling of the low-loss source to optical fibers. A single photon purity of 0.86 is measured from the source number statistics without narrow spectral filtering, and confirmed by direct measurement of the joint spectral intensity. We calculate that similar high-heralded-purity output can be obtained from visible to telecom spectral regions using this approach. On-chip silica sources can have immediate application in a wide range of single-photon quantum optics applications which employ silica photonics.

© 2013 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(270.0270) Quantum optics : Quantum optics
(270.6570) Quantum optics : Squeezed states
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: April 8, 2013
Revised Manuscript: May 13, 2013
Manuscript Accepted: May 14, 2013
Published: May 29, 2013

Citation
Justin B. Spring, Patrick S. Salter, Benjamin J. Metcalf, Peter C. Humphreys, Merritt Moore, Nicholas Thomas-Peter, Marco Barbieri, Xian-Min Jin, Nathan K. Langford, W. Steven Kolthammer, Martin J. Booth, and Ian A. Walmsley, "On-chip low loss heralded source of pure single photons," Opt. Express 21, 13522-13532 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-11-13522


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409, 46–52 (2001). [CrossRef] [PubMed]
  2. J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science339, 798–801 (2013). [CrossRef]
  3. V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: Beating the standard quantum limit,” Science306, 1330–1336 (2004). [CrossRef] [PubMed]
  4. H. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,” Phys. Rev. Lett.81, 5932–5935 (1998). [CrossRef]
  5. M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum.82, 071101 (2011). [CrossRef] [PubMed]
  6. M. Varnava, D. Browne, and T. Rudolph, “How good must single photon sources and detectors be for efficient linear optical quantum computation?” Phys. Rev. Lett.100, 060502 (2008). [CrossRef] [PubMed]
  7. A. Datta, L. Zhang, N. Thomas-Peter, U. Dorner, B. J. Smith, and I. A. Walmsley, “Quantum metrology with imperfect states and detectors,” Phys. Rev. A83, 063836 (2011). [CrossRef]
  8. T. Jennewein, M. Barbieri, and A. G. White, “Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis,” J. Mod. Optic.58, 276–287 (2011). [CrossRef]
  9. M. Lucamarini, G. Vallone, I. Gianani, P. Mataloni, and G. Di Giuseppe, “Device-independent entanglement-based Bennett 1992 protocol,” Phys. Rev. A86, 032325 (2012). [CrossRef]
  10. D. Bouwmeester, J.-W. Pan, K. Mattle, and M. Eibl, “Experimental quantum teleportation,” Nature67, 749–752 (1997).
  11. M. Halder, J. Fulconis, B. Cemlyn, A. Clark, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Nonclassical 2-photon interference with separate intrinsically narrowband fibre sources,” Opt. Express17, 4670–4676 (2009). [CrossRef] [PubMed]
  12. C. Söller, O. Cohen, B. J. Smith, I. A. Walmsley, and C. Silberhorn, “High-performance single-photon generation with commercial-grade optical fiber,” Phys. Rev. A83, 031806 (2011). [CrossRef]
  13. B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. C. Humphreys, X.-M. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, and I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nat. Commun.4, 1356 (2013). [CrossRef] [PubMed]
  14. A. Christ and C. Silberhorn, “Limits on the deterministic creation of pure single-photon states using parametric down-conversion,” Phys. Rev. A85, 023829 (2012). [CrossRef]
  15. B. J. Smith, P. Mahou, O. Cohen, J. S. Lundeen, and I. A. Walmsley, “Photon pair generation in birefringent optical fibers,” Opt. Express17, 23589–23602 (2009). [CrossRef]
  16. W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A64, 063815 (2001). [CrossRef]
  17. A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets,” Laser Phys.15, 146–161 (2005).
  18. P. J. Mosley, A. Christ, A. Eckstein, and C. Silberhorn, “Direct measurement of the spatial-spectral structure of waveguided parametric down-conversion,” Phys. Rev. Lett.103, 233901 (2009). [CrossRef]
  19. T. Zhong, F. N. C. Wong, T. D. Roberts, and P. Battle, “High performance photon-pair source based on a fiber-coupled periodically poled KTiOPO4waveguide,” Opt. Express17, 12019–12030 (2009). [CrossRef] [PubMed]
  20. M. Karpiński, C. Radzewicz, and K. Banaszek, “Dispersion-based control of modal characteristics for parametric down-conversion in a multimode waveguide,” Opt. Lett.37, 878–880 (2012). [CrossRef]
  21. A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett.106, 013603 (2011). [CrossRef] [PubMed]
  22. O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett.102, 123603 (2009). [CrossRef] [PubMed]
  23. F. Zhang and J. W. Y. Lit, “Temperature and strain sensitivity measurements of high-birefringent polarization-maintaining fibers,” Appl. Optics32, 2213–2218 (1993). [CrossRef]
  24. W. Zou, Z. He, and K. Hotate, “Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber,” Opt. Express17, 1248–1255 (2009). [CrossRef] [PubMed]
  25. C. Söller, “Optical fiber sources of pulsed single- and multi-photon states for quantum networks,” Ph.D. thesis, Friedrich-Alexander Universit¨at Erlangen-Nürnberg (2011).
  26. C. Xiong, G. D. Marshall, A. Peruzzo, M. Lobino, A. S. Clark, D.-Y. Choi, S. J. Madden, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. G. Thompson, J. G. Rarity, M. J. Steel, B. Luther-Davies, B. J. Eggleton, and J. L. O’Brien, “Generation of correlated photon pairs in a chalcogenide As2S3waveguide,” Appl. Phys. Lett.98, 051101 (2011). [CrossRef]
  27. M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett.100, 261104 (2012). [CrossRef]
  28. Q. Lin, F. Yaman, and G. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A75, 023803 (2007). [CrossRef]
  29. M. Fiorentino, P. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” IEEE Photonic. Tech. L.14, 983–985 (2002). [CrossRef]
  30. K. Inoue and K. Shimizu, “Generation of quantum-correlated photon pairs in optical fiber: Influence of spontaneous Raman scattering,” Jpn. J. Appl. Phys.43, 8048–8052 (2004). [CrossRef]
  31. G. D. Marshall, A. Politi, J. C. F. Matthews, P. Dekker, M. Ams, M. J. Withford, and J. L. O’Brien, “Laser written waveguide photonic quantum circuits,” Opt. Express17, 12546–12554 (2009). [CrossRef] [PubMed]
  32. P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics6, 45–49 (2011). [CrossRef]
  33. A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun.2, 566 (2011). [CrossRef] [PubMed]
  34. J. O. Owens, M. A. Broome, D. N. Biggerstaff, M. E. Goggin, A. Fedrizzi, T. Linjordet, M. Ams, G. D. Marshall, J. Twamley, M. J. Withford, and A. G. White, “Two-photon quantum walks in an elliptical direct-write waveguide array,” New J. Phys.13, 075003 (2011). [CrossRef]
  35. A. Crespi, R. Osellame, R. Ramponi, V. Giovannetti, R. Fazio, L. Sansoni, F. D. Nicola, F. Sciarrino, and P. Mataloni, “Anderson localization of entangled photons in an integrated quantum walk,” Nat. Photonics7, 322–328 (2013). [CrossRef]
  36. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21, 1729–1731 (1996). [CrossRef] [PubMed]
  37. G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A-Pure Appl. Op.11, 013001 (2009). [CrossRef]
  38. P. S. Salter, A. Jesacher, J. B. Spring, B. J. Metcalf, N. Thomas-Peter, R. D. Simmonds, N. K. Langford, I. A. Walmsley, and M. J. Booth, “Adaptive slit beam shaping for direct laser written waveguides,” Opt. Lett.37, 470–472 (2012). [CrossRef] [PubMed]
  39. R. Loudon, The Quantum Theory of Light(Oxford University, 2000), 3rd ed.
  40. D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling,” Opt. Express19, 870–875 (2011). [CrossRef] [PubMed]
  41. C. K. Law, I. A. Walmsley, and J. H. Eberly, “Continuous frequency entanglement: Effective finite Hilbert space and entropy control,” Phys. Rev. Lett.84, 5304–5307 (2000). [CrossRef] [PubMed]
  42. P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett.100, 133601 (2008). [CrossRef] [PubMed]
  43. W. Mauerer, M. Avenhaus, W. Helwig, and C. Silberhorn, “How colors influence numbers: Photon statistics of parametric down-conversion,” Phys. Rev. A80, 053815 (2009). [CrossRef]
  44. M. Nasr, S. Carrasco, B. Saleh, A. Sergienko, M. Teich, J. Torres, L. Torner, D. Hum, and M. Fejer, “Ultra-broadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett.100, 183601 (2008).
  45. K. Garay-Palmett, Y. Jeronimo-Moreno, and A. B. U’Ren, “Theory of cavity-enhanced spontaneous four wave mixing,” Laser Phys.23, 015201 (2013). [CrossRef]
  46. G. D. Marshall, M. Ams, and M. J. Withford, “Direct laser written waveguide-Bragg gratings in bulk fused silica,” Opt. Lett.31, 2690–2691 (2006). [CrossRef] [PubMed]
  47. G. Lepert, M. Trupke, E. A. Hinds, H. Rogers, J. C. Gates, and P. G. R. Smith, “Demonstration of UV-written waveguides, Bragg gratings and cavities at 780 nm, and an original experimental measurement of group delay,” Opt. Express19, 24933–24943 (2011). [CrossRef]
  48. R. H. Stolen, M. A. Bösch, and C. Lin, “Phase matching in birefringent fibers,” Opt. Lett.6, 213–215 (1981). [CrossRef] [PubMed]
  49. A. Migdall, D. Branning, and S. Castelletto, “Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source,” Phys. Rev. A66, 053805 (2002). [CrossRef]
  50. J. H. Shapiro and F. N. C. Wong, “On-demand single-photon generation using a modular array of parametric downconverters with electro-optic polarization controls,” Opt. Lett.32, 2698–2700 (2007). [CrossRef] [PubMed]
  51. J. Nunn, N. K. Langford, W. S. Kolthammer, T. F. M. Champion, M. R. Sprague, P. S. Michelberger, X.-M. Jin, D. G. England, and I. A. Walmsley, “Enhancing multiphoton rates with quantum memories,” Phys. Rev. Lett.110, 133601 (2013). [CrossRef] [PubMed]
  52. G. Harder, V. Ansari, B. Brecht, T. Dirmeier, C. Marquardt, and C. Silberhorn, “An optimized photon pair source for quantum circuits,” arXiv:1304.6635 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited