OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 11 — Jun. 3, 2013
  • pp: 13564–13571

Simple and compact V-cavity semiconductor laser with 50×100 GHz wavelength tuning

Sen Zhang, Jianjun Meng, Shanli Guo, Lei Wang, and Jian-Jun He  »View Author Affiliations


Optics Express, Vol. 21, Issue 11, pp. 13564-13571 (2013)
http://dx.doi.org/10.1364/OE.21.013564


View Full Text Article

Enhanced HTML    Acrobat PDF (1105 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Abstract: We report simple and compact V-cavity semiconductor laser capable of full-band wavelength tuning. A half-wave coupler is used to obtain high side-mode suppression ratio (SMSR) without any grating or epitaxial regrowth. Temperature induced gain spectrum shift is employed in combination with the Vernier tuning mechanism to extend the wavelength tuning range beyond the free spectral range limit. Wavelength tuning of 50 channels at 100GHz spacing with SMSR up to 38 dB has been demonstrated. We show that with a temperature variation of 35°C, the tuning range can be extended by about 15 nm, in contrast to 0.1 nm/°C for thermo-optic tuning range in grating based lasers. At a fixed temperature, consecutive wavelength tuning of 31 channels was achieved. The response time of the channel switching under the current-tuning regime is measured to be about 20μs. The large tuning range that can cover the full C-band will enable such a simple, compact and potentially low-cost tunable laser to be used in wavelength-agile access and data center networks.

© 2013 OSA

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: May 1, 2013
Revised Manuscript: May 18, 2013
Manuscript Accepted: May 19, 2013
Published: May 30, 2013

Citation
Sen Zhang, Jianjun Meng, Shanli Guo, Lei Wang, and Jian-Jun He, "Simple and compact V-cavity semiconductor laser with 50×100 GHz wavelength tuning," Opt. Express 21, 13564-13571 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-11-13564


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Jayaraman, D. A. Cohen, and L. A. Coldren, “Demonstration of broadband tunability in a semiconductor laser using sampled gratings,” Appl. Phys. Lett.60(19), 2321–2323 (1992). [CrossRef]
  2. B. Mason, G. A. Fish, S. P. DenBaars, and L. A. Coldren, “Widely tunable sampled grating DBR laser with integrated electroabsorption modulator,” IEEE Photon. Technol. Lett.11(6), 638–640 (1999). [CrossRef]
  3. L. A. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron.6(6), 988–999 (2000). [CrossRef]
  4. J. Zhao, N. Zhou, Y. Tang, J. Zhao, L. Wang, X. Chen, X. Huang, Y. Yu, and W. Liu, “Design and fabrication of tunable laser with digital concatenated grating,” Semicond. Sci. Technol.28(3), 035001 (2013). [CrossRef]
  5. Y. Tohmori, Y. Yoshikuni, H. Ishii, F. Kano, T. Tamamura, Y. Kondo, and M. Yamamoto, “Broad-range wavelength-tunable superstructure grating (SSG) DBR lasers,” IEEE J. Quantum Electron.29(6), 1817–1823 (1993). [CrossRef]
  6. M. Öberg, P. J. Rigole, S. Nilsson, T. Klinga, L. Backbom, K. Streubel, J. Wallin, and T. Kjellberg, “Complete single mode wavelength coverage over 40 nm with a superstructure grating DBR laser,” J. Lightwave Technol.13(9), 1892–1898 (1995). [CrossRef]
  7. H. Ishii, F. Kano, Y. Tohmori, Y. Kondo, T. Tamamura, and Y. Yoshikuni, “Narrow spectral linewidth under wavelength tuning in thermally tunable super-structure-grating (SSG) DBR lasers,” IEEE J. Sel. Top. Quantum Electron.1(2), 401–407 (1995). [CrossRef]
  8. A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron.11(1), 149–156 (2005). [CrossRef]
  9. J.-O. Wesström, G. Sarlet, S. Hammerfeldt, L. Lundqvist, P. Szabo, and P.-J. Rigole, “State of the art performance of widely tunable modulated grating Y-branch lasers,” Opt. Fiber Commun. Conference, paper TuE2 (2004).
  10. H. Ishii, K. Kasaya, H. Oohashi, Y. Shibata, H. Yasaka, and K. Okamoto, “Widely wavelength-tunable DFB laser array integrated with funnel combiner,” IEEE J. Quantum Electron.13(5), 1089–1094 (2007). [CrossRef]
  11. J. D. Berger, Y. Zhang, J. D. Grade, H. Lee, S. Hrinya, and H. Jerman, “Widely tunable external cavity diode laser using a MEMS electrostatic rotary actuator,” European Conference on Opt. Commun., Amsterdam, paper TuF3.3 (2001).
  12. B. Liu, A. Shakouri, and J. E. Bowers, “Wide tunable double ring resonator coupled lasers,” IEEE Photon. Technol. Lett.14(5), 600–602 (2002). [CrossRef]
  13. T. Segawa, S. Matsuo, T. Kakitsuka, T. Sato, Y. Kondo, and H. Suzuki, “Full C-band tuning operation of semiconductor double ring resonator coupled laser with low tuning current,” IEEE Photon. Technol. Lett.19(17), 1322–1324 (2007). [CrossRef]
  14. S. Matsuo and T. Segawa, “Microring-resonator-based widely tunable lasers,” IEEE J. Sel. Top. Quantum Electron.15(3), 545–554 (2009). [CrossRef]
  15. A. Le Liepvre, C. Janyl, A. Accard, M. Lamponi, F. Poingt, D. Make, F. Lelarge, J.-M. Fedeli, S. Messaoudene, D. Bordel, and G.-H. Duan, “Widely wavelength tunable hybrid III-V/silicon laser with 45 nm tuning range fabricated using a wafer bonding technique,” IEEE 9th International Conf. on Group IV Photonics, 54–56 (2012).
  16. L. Coldren, K. Furuya, B. Miller, and J. Rentschler, “Etched mirror and groove-coupled GaInAsP/InP laser devices for integrated optics,” IEEE J. Quantum Electron.18(10), 1679–1688 (1982). [CrossRef]
  17. W. T. Tsang, “The cleaved-coupled-cavity (C3) laser,” Semicond. Semimetals22, 257–373 (1985). [CrossRef]
  18. K. Shi, F. Smyth, D. Reid, B. Roycroft, B. Corbett, F. H. Peters, and L. P. Barry, “Characterization of a tunable three-section slotted Fabry–Perot laser for advanced modulation format optical transmission,” Opt. Commun.284(6), 1616–1621 (2011). [CrossRef]
  19. D. Byrne, J. Engelstaedter, W. Guo, Q. Lu, B. Corbett, B. Roycroft, J. O’Callaghan, and F. H. Peters, “Discretely tunable semiconductor lasers suitable for photonic integration,” IEEE J. Sel. Top. Quantum Electron.15(3), 482–487 (2009). [CrossRef]
  20. T. Yu, L. Zou, L. Wang, and J.-J. He, “Single-mode and wavelength tunable lasers based on deep-submicron slots fabricated by standard UV-lithography,” Opt. Express20(15), 16291–16299 (2012). [CrossRef]
  21. J.-J. He and D. Liu, “Wavelength switchable semiconductor laser using half-wave V-coupled cavities,” Opt. Express16(6), 3896–3911 (2008). [CrossRef] [PubMed]
  22. J. Jin, L. Wang, T. Yu, Y. Wang, and J.-J. He, “Widely wavelength switchable V-coupled-cavity semiconductor laser with ∼40 dB side-mode suppression ratio,” Opt. Lett.36(21), 4230–4232 (2011). [CrossRef] [PubMed]
  23. W.-H. Guo, Q. Lu, M. Nawrocka, A. Abdullaev, J. O’Callaghan, and J. F. Donegan, “Nine-channel wavelength tunable single mode laser array based on slots,” Opt. Express21(8), 10215–10221 (2013). [CrossRef] [PubMed]
  24. J. Buus, M. C. Amann, and D. J. Blumenthal, Tunable Laser Diodes and Related Optical Sources (Wiley-Interscience, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited