OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 11 — Jun. 3, 2013
  • pp: 13572–13579

High-bandwidth squeezed light at 1550 nm from a compact monolithic PPKTP cavity

Stefan Ast, Moritz Mehmet, and Roman Schnabel  »View Author Affiliations

Optics Express, Vol. 21, Issue 11, pp. 13572-13579 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1127 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the generation of squeezed vacuum states of light at 1550 nm with a broadband quantum noise reduction of up to 4.8 dB ranging from 5 MHz to 1.2 GHz sideband frequency. We used a custom-designed 2.6 mm long biconvex periodically-poled potassium titanyl phosphate (PPKTP) crystal. It featured reflectively coated end surfaces, 2.26 GHz of linewidth and generated the squeezing via optical parametric amplification. Two homodyne detectors with different quantum efficiencies and bandwidths were used to characterize the non-classical noise suppression. We measured squeezing values of up to 4.8 dB from 5 to 100 MHz and up to 3 dB from 100 MHz to 1.2 GHz. The squeezed vacuum measurements were limited by detection loss. We propose an improved detection scheme to measure up to 10 dB squeezing over 1 GHz. Our results of GHz bandwidth squeezed light generation provide new prospects for high-speed quantum key distribution.

© 2013 OSA

OCIS Codes
(270.6570) Quantum optics : Squeezed states
(270.5568) Quantum optics : Quantum cryptography

ToC Category:
Quantum Optics

Original Manuscript: March 11, 2013
Revised Manuscript: April 24, 2013
Manuscript Accepted: April 24, 2013
Published: May 30, 2013

Stefan Ast, Moritz Mehmet, and Roman Schnabel, "High-bandwidth squeezed light at 1550 nm from a compact monolithic PPKTP cavity," Opt. Express 21, 13572-13579 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. C. Ralph, “Continuous variable quantum cryptography,” Phys. Rev. A61, 010303 (1999). [CrossRef]
  2. L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip, and U. L. Andersen, “Continuous variable quantum key distribution with modulated entangled states,” Nat. Com.3, 1083 (2012). [CrossRef]
  3. M. Hillery, “Quantum cryptography with squeezed states,” Phys. Rev. A61, 022309 (2000). [CrossRef]
  4. C. Silberhorn, N. Korolkova, and G. Leuchs, “Quantum key distribution with bright entangled beams,” Phys. Rev. Lett.88, 167902 (2002). [CrossRef] [PubMed]
  5. N.J. Cerf, J. Clavareau, C. Macchiavello, and J. Roland, “Quantum entanglement enhances the capacity of bosonic channels with memory,” Phys. Rev. A72, 042330 (2005). [CrossRef]
  6. J. Lodewyck, M. Bloch, R. García-Patrón, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25km with an all-fiber continuous-variable system,” Phys. Rev. A76, 042305 (2007). [CrossRef]
  7. M. Mehmet, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Demonstration of a quantum-enhanced fiber Sagnac interferometer,” Opt. Lett.35, 1665 (2010). [CrossRef] [PubMed]
  8. T. Eberle, V. Händchen, J. Duhme, T. Franz, R. F. Werner, and R. Schnabel, “Gaussian entanglement for quantum key distribution from a single-mode squeezing source,” arXiv:1110.3977v1.
  9. R. García-Patrón and N. J. Cerf, “Continuous-variable quantum key distribution protocols over noisy channels,” Phys. Rev. Lett.102, 130501 (2009). [CrossRef] [PubMed]
  10. R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett.55, 2409 (1985). [CrossRef] [PubMed]
  11. B. Yurke, “Use of cavities in squeezed-state generation,” Phys. Rev. A29, 408 (1984). [CrossRef]
  12. L.-A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett.57, 2520 (1986). [CrossRef] [PubMed]
  13. M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Exp.19, 25763 (2011). [CrossRef]
  14. S. Ast, A. Samblowski, M. Mehmet, S. Steinlechner, T. Eberle, and R. Schnabel, “Continuous-wave nonclassical light with gigahertz squeezing bandwidth,” Opt. Lett.37, 2367 (2012). [CrossRef] [PubMed]
  15. M. Mehmet, H. Vahlbruch, N. Lastzka, K. Danzmann, and R. Schnabel, “Observation of squeezed states with strong photon-number oscillations,” Phys. Rev. A81, 013814 (2010). [CrossRef]
  16. R. J. Senior, G. N. Milford, J. Janousek, A. E. Dunlop, K. Wagner, H-A. Bachor, T. C. Ralph, E. H. Huntington, and C. C. Harb, “Observation of a comb of optical squeezing over many gigahertz of bandwidth,” Opt. Exp.15, 5310 (2007). [CrossRef]
  17. J. Steinlechner, S. Ast, C. Krüger, A. P. Singh, T. Eberle, V. Händchen, and R. Schnabel, “Absorption measurements of periodically poled potassium titanyl phosphate (PPKTP) at 775 nm and 1550 nm,” Sensors13, 565–573, (2013). [CrossRef] [PubMed]
  18. K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, “Squeezing in the audio gravitational-wave detection band,” Phys. Rev. Lett.93, 161105 (2004). [CrossRef] [PubMed]
  19. G. Breitenbach, T. Müller, S. F. Pereira, J.-Ph. Poizat, S. Schiller, and J. Mlynek, “Squeezed vacuum from a monolithic optical parametric oscillator,” J. Opt. Soc. Am. B12, 2304 (1995). [CrossRef]
  20. C. Rodò, O. Romero-Isart, K. Eckert, and A. Sanpera, “Efficiency in quantum key distribution protocols with entangled gaussian states,” Open Systs. Inf. Dyn.14, 69 (2007). [CrossRef]
  21. X. Su, W. Wang, Y. Wang, X. Jia, C. Xie, and K. Peng, “Continuous variable quantum key distribution based on optical entangled states without signal modulation,” EPL87, 20005 (2009). [CrossRef]
  22. F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: Finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett.109, 100502 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited