OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 11 — Jun. 3, 2013
  • pp: 13617–13625

A novel method for combating dispersion induced power fading in dispersion compensating fiber

Alexander Lebedev, J. J. Vegas Olmos, Miguel Iglesias, Søren Forchhammer, and Idelfonso Tafur Monroy  »View Author Affiliations


Optics Express, Vol. 21, Issue 11, pp. 13617-13625 (2013)
http://dx.doi.org/10.1364/OE.21.013617


View Full Text Article

Enhanced HTML    Acrobat PDF (1178 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We experimentally investigate the performance of 60 GHz double sideband (DSB) radio over fiber (RoF) links that employ dispersion compensating fiber (DCF). Error free transmission of 3 Gbps signals over 1 m of wireless distance is reported. In order to overcome experimentally observed chromatic dispersion (CD) induced power fading of radio frequency (RF) signal, we propose a method for improvement of RF carrier-to-noise (C/N) ratio through introduction of a degree of RF frequency tunability. Overall results improve important aspects of directly modulated RoF systems and demonstrate the feasibility of high carrier frequency and wide bandwidth RF signals delivery in RoF links including DCF fiber. Error free performance that we obtain for 3 Gbps amplitude shift-keying (ASK) signals enables uncompressed high-definition 1080p video delivery.

© 2013 OSA

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: April 4, 2013
Revised Manuscript: May 16, 2013
Manuscript Accepted: May 23, 2013
Published: May 30, 2013

Citation
Alexander Lebedev, J. J. Vegas Olmos, Miguel Iglesias, Søren Forchhammer, and Idelfonso Tafur Monroy, "A novel method for combating dispersion induced power fading in dispersion compensating fiber," Opt. Express 21, 13617-13625 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-11-13617


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Cisco white paper, “Cisco visual networking index: global mobile data traffic forecast update, 2012-2017,” (Cisco, 2012). http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.pdf .
  2. Ericsson white paper, “Traffic and market data report,” (Ericsson, 2011). http://hugin.info/1061/R/1561267/483187.pdf .
  3. Ericsson white paper, “Heterogeneous networks,” (Ericsson, 2012). http://www.ericsson.com/res/docs/whitepapers/WP-Heterogeneous-Networks.pdf .
  4. M. C. Parker, S. D. Walker, R. Llorente, M. Morant, M. Beltrán, I. Möllers, D. Jäger, C. Vázquez, D. Montero, I. Librán, S. Mikroulis, S. Karabetsos, and A. Bogris, “Radio-over-fibre technologies arising from the building the future optical network in Europe (BONE) project,” IET Optoelectron.4(6), 247–259 (2010). [CrossRef]
  5. C. Lim, A. Nirmalathas, M. Bakaul, P. Gamage, L. Ka-Lun, Y. Yizhu, D. Novak, and R. Waterhouse, “Fiber-Wireless Networks and Subsystem Technologies,” J. Lightwave Technol.28(4), 390–405 (2010). [CrossRef]
  6. A. M. Zin, M. S. Bongsu, S. M. Idrus, and N. Zulkifli, “An overview of radio-over-fiber network technology,” in Proceedings of IEEE International Conference on Photonics, (Institute of Electrical and Electronics Engineers, San Francisco, 2010), paper ICP2010–85.
  7. R. Herschel and C. G. Schaeffer, “Architectures for multiband multi gbps radio-over-fiber systems,” in Proceedings of 12th ITG Conference on Photonic Networks (Institute of Electrical and Electronics Engineers, Leipzig, Germany, 2011), paper 24.
  8. Vubiq specification datasheet, “60 GHz receiver waveguide module,” (Vubiq, 2013). http://www.vubiq.com/pdf/Data%20Sheet%20V60RXWG2%20rev1.3.pdf .
  9. WirelessHD white paper, “WirelessHD Specification Version 1.1 Overview,” (WirelessHD, 2010). http://www.wirelesshd.org/pdfs/WirelessHD-Specification-Overview-v1.1May2010.pdf .
  10. Siversima white paper, “MM-wave converter series for high capacity wireless transfer,” (Siversima, 2010). http://www.siversima.com/wp-content/uploads/2011/10/high-capacity-wirelesstransfer_111010.pdf .
  11. R. Hofstetter, H. Schmuck, and R. Heidemann, “Dispersion effects in optical millimeter-wave systems using self-heterodyne method for transport and generation,” IEEE Trans. Microw. Theory43(9), 2263–2269 (1995). [CrossRef]
  12. K. Kitayama, “Ultimate performance of optical DSB signal-based millimeter-wave fiber-radio system: effect of laser phase noise,” J. Lightwave Technol.17(10), 1774–1781 (1999). [CrossRef]
  13. A. Stohr, K. Kitayama, and T. Kuri, “Fiber-length extension in an optical 60-GHz transmission system using an EA-modulator with negative chirp,” IEEE Photon. Technol. Lett.11(6), 739–741 (1999). [CrossRef]
  14. A. Ng'oma, Sh. Po-Tsung, J. George, F. Annunziata, M. Sauer, L. Chun-Ting, J. Wen Jr., Jyehong, and S. Chi, “21 Gbps OFDM wireless signal transmission at 60 GHz using a simple IMDD radio-over-fiber system,” Conference on Optical Fiber Communication, collocated National Fiber Optic Engineers Conference (Optical Society of America, 2010), paper OTuF4.
  15. M. Weiß, “60 GHz photonic millimeter-wave communication systems,” PhD dissertation, University of Duisburg-Essen, 2010.
  16. H. Sun, M. C. Cardakli, K.-M. Feng, J.-X. Cai, H. Long, M. I. Hayee, and A. E. Willner, “Tunable RF-powerfading compensation of multiple-channel double-sideband SCM transmission using a nonlinearly chirped FBG,” IEEE Photon. Technol. Lett.12(5), 546–548 (2000). [CrossRef]
  17. B. Hraimel, Zh. Xiupu, M. Mohamed, and W. Ke, “Precompensated optical double-sideband subcarrier modulation immune to fiber chromatic-dispersion-induced radio frequency power fading,” J. Opt. Commun. Netw.1(4), 331–342 (2009). [CrossRef]
  18. H. Sotobayashi and K. Kitayama, “Cancellation of the signal fading for 60 GHz subcarrier multiplexed optical DSB signal transmission in nondispersion shifted fiber using midway optical phase conjugation,” J. Lightwave Technol.17(12), 2488–2497 (1999). [CrossRef]
  19. A. Lebedev, J. J. Vegas Olmos, X. Pang, S. Forchhammer, and I. Tafur Monroy, “Demonstration and comparison study for V- and W-band real-time high-definition video delivery in diverse fiber-wireless infrastructure,” Fiber Integrated Opt.32(2), 93–104 (2013). [CrossRef]
  20. T. T. Pham, A. Lebedev, M. Beltrán, X. Yu, R. Llorente, and I. Tafur Monroy, “Combined singlemode/multimode fiber link supporting simplified in-building 60-GHz gigabit wireless access,” Opt. Fiber Technol.18(4), 226–229 (2012). [CrossRef]
  21. J. Ma, J. Yu, C. Yu, X. Xin, J. Zeng, and L. Chen, “Fiber dispersion influence on transmission of the optical millimeter-waves generated using LN-MZM intensity modulation,” J. Lightwave Technol.25(11), 3244–3256 (2007). [CrossRef]
  22. G. Hilt, “Optical transmission and upconversion of microwave signals in radio-over-fiber telecommunication Systems,” PhD dissertation, L’institut National Polytechnique De Grenoble, (1999).
  23. H. Schmuck, “Comparison of optical millimetre-wave system concepts with regard to chromatic Dispersion,” Electron. Lett.31(21), 1848–1849 (1995). [CrossRef]
  24. U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter wave links,” IEEE Trans. Microw. Theory44(10), 1716–1724 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited