OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 11 — Jun. 3, 2013
  • pp: 13626–13638

High-frequency self-induced oscillations in a silicon nanocavity

Nicolas Cazier, Xavier Checoury, Laurent-Daniel Haret, and Philippe Boucaud  »View Author Affiliations

Optics Express, Vol. 21, Issue 11, pp. 13626-13638 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1441 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show that self-induced oscillations at frequencies above GHz and with a high spectral purity can be obtained in a silicon photonic crystal nanocavity under optical pumping. This self-pulsing results from the interplay between the nonlinear response of the cavity and the photon cavity lifetime. We provide a model to analyze the mechanisms governing the onset of self-pulsing, the amplitudes of both fundamental and harmonic oscillations and their dependences versus input power and oscillation frequency. Theoretically, oscillations at frequencies higher than 50 GHz could be achieved in this system.

© 2013 osa

OCIS Codes
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(230.4910) Optical devices : Oscillators
(140.3948) Lasers and laser optics : Microcavity devices
(230.5298) Optical devices : Photonic crystals

ToC Category:
Integrated Optics

Original Manuscript: April 8, 2013
Revised Manuscript: May 17, 2013
Manuscript Accepted: May 21, 2013
Published: May 30, 2013

Nicolas Cazier, Xavier Checoury, Laurent-Daniel Haret, and Philippe Boucaud, "High-frequency self-induced oscillations in a silicon nanocavity," Opt. Express 21, 13626-13638 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature (London)425, 944–947 (2003). [CrossRef]
  2. B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater.4, 207–210 (2005). [CrossRef]
  3. Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, and S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express17, 18093–18102 (2009). [CrossRef] [PubMed]
  4. M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater.3, 211–219 (2004). [CrossRef]
  5. P. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express13, 801–820 (2005). [CrossRef] [PubMed]
  6. C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express17, 2944–2953 (2009). [CrossRef] [PubMed]
  7. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip,” Opt. Lett.30, 2575–2577 (2005). [CrossRef] [PubMed]
  8. X. Checoury, Z. Han, and P. Boucaud, “Stimulated Raman scattering in silicon photonic crystal waveguides under continuous excitation,” Phys. Rev. B82, 041308(R) (2010). [CrossRef]
  9. J. F. McMillan, M. B. Yu, D. L. Kwong, and C. W. Wong, “Observation of four-wave mixing in slow-light silicon photonic crystal waveguides,” Opt. Express18, 15484–15497 (2010). [CrossRef] [PubMed]
  10. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics1, 319–330 (2007). [CrossRef]
  11. S. Malaguti, G. Bellanca, A. de Rossi, S. Combrié, and S. Trillo, “Self-pulsing driven by two-photon absorption in semiconductor nanocavities,” Phys. Rev. A83, 051802 (2011). [CrossRef]
  12. K. Ikeda and O. Akimoto, “Instability leading to periodic and chaotic self-pulsations in a bistable optical cavity,” Phys. Rev. Lett.48, 617–620 (1982). [CrossRef]
  13. S. Chen, L. Zhang, Y. Fei, and T. Cao, “Bistability and self-pulsation phenomena in silicon microring resonators based on nonlinear optical effects,” Opt. Express20, 7454–7468 (2012). [CrossRef] [PubMed]
  14. T. J. Johnson, M. Borselli, and O. Painter, “Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator,” Opt. Express14, 817–831 (2006). [CrossRef] [PubMed]
  15. M. Brunstein, A. M. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and A. Levenson, “Excitability and self-pulsing in a photonic crystal nanocavity,” Phys. Rev. A85, 031803– (2012). [CrossRef]
  16. M. Soltani, S. Yegnanarayanan, Q. Li, A. A. Eftekhar, and A. Adibi, “Self-sustained gigahertz electronic oscillations in ultrahigh-Q photonic microresonators,” Phys. Rev. A85, 053819 (2012). [CrossRef]
  17. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett.88, 041112 (2006). [CrossRef]
  18. Z. Han, X. Checoury, D. Néel, S. David, M. El Kurdi, and P. Boucaud, “Optimized design for 2 × 106 ultra-high Q silicon photonic crystal cavities,” Opt. Commun.283, 4387–4391 (2010). [CrossRef]
  19. Z. Han, X. Checoury, L.-D. Haret, and P. Boucaud, “High quality factor in a two-dimensional photonic crystal cavity on silicon-on-insulator,” Opt. Lett.36, 1749–1751 (2011). [CrossRef] [PubMed]
  20. T. Uesugi, B. S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express14, 377–386 (2006). [CrossRef] [PubMed]
  21. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express15, 16604–16644 (2007). [CrossRef] [PubMed]
  22. T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, and M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett.96, 101103 (2010). [CrossRef]
  23. L.-D. Haret, X. Checoury, Z. Han, P. Boucaud, S. Combrié, and A. D. Rossi, “All-silicon photonic crystal photo-conductor on silicon-on-insulator at telecom wavelength,” Opt. Express18, 23965–23972 (2010). [CrossRef] [PubMed]
  24. A. Armaroli, S. Malaguti, G. Bellanca, S. Trillo, A. de Rossi, and S. Combrié, “Oscillatory dynamics in nanocavities with noninstantaneous Kerr response,” Phys. Rev. A84, 053816 (2011). [CrossRef]
  25. T. J. Johnson and O. Painter, “Passive modification of free carrier lifetime in high-Q silicon-on-insulator optics,” 2009 Conference On Lasers and Electro-optics and Quantum Electronics and Laser Science Conference (CLEO/QELS 2009), 1–5, 72–73 (2009).
  26. P. Grinberg, K. Bencheikh, M. Brunstein, A. M. Yacomotti, Y. Dumeige, I. Sagnes, F. Raineri, L. Bigot, and J. A. Levenson, “Nanocavity linewidth narrowing and group delay enhancement by slow light propagation and nonlinear effects,” Phys. Rev. Lett.109, 113903 (2012). [CrossRef] [PubMed]
  27. S. Kaka, M. R. Pufall, W. H. Rippard, T. J. Silva, S. E. Russek, and J. A. Katine, “Mutual phase-locking of microwave spin torque nano-oscillators,” Nature (London)437, 389–392 (2005). [CrossRef]
  28. A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, and M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express18, 3582–3591 (2010). [CrossRef] [PubMed]
  29. If we consider that the transmitted signal is detected by a photodetector, the RF power is proportional to the square of the electric intensity generated by the photodetector, i.e. to the square of the optical intensity.
  30. M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett.82, 2954–2956 (2003). [CrossRef]
  31. H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. and Chem. Ref. Data9, 98 (1980).
  32. T. Tanabe, H. Taniyama, and M. Notomi, “Carrier diffusion and recombination in photonic crystal nanocavity optical switches,” J. Lightwave Tech.26, 1396–1403 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4. :

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited