OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 11 — Jun. 3, 2013
  • pp: 13639–13647

Selective synthesis of Sb2S3 nanoneedles and nanoflowers for high performance rigid and flexible photodetectors

Junfeng Chao, Bo Liang, Xiaojuan Hou, Zhe Liu, Zhong Xie, Bin Liu, Weifeng Song, Gui Chen, Di Chen, and Guozhen Shen  »View Author Affiliations

Optics Express, Vol. 21, Issue 11, pp. 13639-13647 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (4188 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Needle-like and flower-like antimony sulfide nanostructures were synthesized and applied for both rigid and flexible photodetectors. Rigid photodetectors based on both nanostructures have the features of linear photocurrent characteristics, low linear dynamic range and good sensitivity to light intensity. Especially, the rigid Sb2S3 nanoflowers photodetector has high photoresponse characteristics and its response time and decay time were found to be relatively fast as 6 ms and 10 ms respectively. The flexible Sb2S3 nanoflowers photodetector has high flexible, light-weight and adequate bendability with a response time of about 0.09 s and recovery time of 0.27 s. Our results revealed that the rigid and flexible photodetectors based on Sb2S3 nanostructures have great potential in next generation optoelectronic devices.

© 2013 OSA

OCIS Codes
(230.0250) Optical devices : Optoelectronics
(230.5160) Optical devices : Photodetectors
(260.5150) Physical optics : Photoconductivity

ToC Category:

Original Manuscript: March 25, 2013
Revised Manuscript: April 30, 2013
Manuscript Accepted: May 17, 2013
Published: May 30, 2013

Junfeng Chao, Bo Liang, Xiaojuan Hou, Zhe Liu, Zhong Xie, Bin Liu, Weifeng Song, Gui Chen, Di Chen, and Guozhen Shen, "Selective synthesis of Sb2S3 nanoneedles and nanoflowers for high performance rigid and flexible photodetectors," Opt. Express 21, 13639-13647 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. D. Lin, H. Wu, and W. Pan, “Photo-switches and memories assembled by electro-spinning aluminum doped zinc oxide single nanowire,” Adv. Mater.19(22), 3968–3972 (2007). [CrossRef]
  2. T. C. Shang, F. Yang, W. Zheng, and C. Wang, “Fabrication of electrically bistable nanofibers,” Small2(8-9), 1007–1009 (2006). [CrossRef] [PubMed]
  3. E. Monroy, F. Omnès, and F. Calle, “Wide-bandgap semiconductor ultraviolet photodetectors,” Semicond. Sci. Technol.18(4), R33–R51 (2003). [CrossRef]
  4. L. Li, P. S. Lee, C. Y. Yan, T. Y. Zhai, X. S. Fang, M. Y. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In₂Ge₂O₇ nanobelts,” Adv. Mater.22(45), 5145–5149 (2010). [CrossRef] [PubMed]
  5. Y. Jiang, W. J. Zhang, J. S. Jie, X. M. Meng, X. Fan, and S. T. Lee, “Photoresponse properties of CdSe single-nanoribbon photodetectors,” Adv. Funct. Mater.17(11), 1795–1800 (2007). [CrossRef]
  6. M. Y. Liao, Y. Koide, J. Alvarez, M. Imura, and J. P. Kleider, “Persistent positive and transient absolute negative photoconductivity observed in diamond photodetectors,” Phys. Rev. B78(4), 045112 (2008). [CrossRef]
  7. T. Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, L. Li, B. D. Liu, Y. Koide, Y. Ma, J. N. Yao, Y. Bando, and D. Golberg, “Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors,” ACS Nano4(3), 1596–1602 (2010). [CrossRef] [PubMed]
  8. S. C. Kung, W. E. van der Veer, F. Yang, K. C. Donavan, and R. M. Penner, “20 micros photocurrent response from lithographically patterned nanocrystalline cadmium selenide nanowires,” Nano Lett.10(4), 1481–1485 (2010). [CrossRef] [PubMed]
  9. B. Liu, Z. R. Wang, Y. Dong, Y. G. Zhu, Y. Gong, S. H. Ran, Z. Liu, J. Xu, Z. Xie, D. Chen, and G. Z. Shen, “ZnO-nanoparticle-assembled cloth for flexible photodetectors and recyclable photocatalysts,” J. Mater. Chem.22(18), 9379–9384 (2012). [CrossRef]
  10. Z. R. Wang, H. Wang, B. Liu, W. Z. Qiu, J. Zhang, S. H. Ran, H. T. Huang, J. Xu, H. W. Han, D. Chen, and G. Z. Shen, “Transferable and flexible nanorod-assembled TiO₂ cloths for dye-sensitized solar cells, photodetectors, and photocatalysts,” ACS Nano5(10), 8412–8419 (2011). [CrossRef] [PubMed]
  11. L. Li, P. C. Wu, X. S. Fang, T. Y. Zhai, L. Dai, M. Y. Liao, Y. S. Koide, H. Q. Wang, Y. Bando, and D. Golberg, “Single-crystalline CdS nanobelts for excellent field-emitters and ultrahigh quantum-efficiency photodetectors,” Adv. Mater.22(29), 3161–3165 (2010). [CrossRef] [PubMed]
  12. Z. Liu, H. T. Huang, B. Liang, X. F. Wang, Z. R. Wang, D. Chen, and G. Z. Shen, “Zn2GeO4 and In2Ge2O7 nanowire mats based ultraviolet photodetectors on rigid and flexible substrates,” Opt. Express20(3), 2982–2991 (2012). [CrossRef] [PubMed]
  13. G. Z. Shen, B. Liang, X. F. Wang, H. T. Huang, D. Chen, and Z. L. Wang, “Ultrathin In2O3 nanowires with diameters below 4 nm: synthesis, reversible wettability switching behavior, and transparent thin-film transistor applications,” ACS Nano5(8), 6148–6155 (2011). [CrossRef] [PubMed]
  14. J. N. Lu, M. Hu, Y. Tian, C. F. Guo, C. Wang, S. M. Guo, and Q. Liu, “Fast visible light photoelectric switch based on ultralong single crystalline V₂O₅ nanobelt,” Opt. Express20(7), 6974–6979 (2012). [CrossRef] [PubMed]
  15. G. Z. Shen and D. Chen, “One-dimensional nanostructures for photodetectors,” Recent Pat. Nanotechnol.4(1), 20–31 (2010). [CrossRef] [PubMed]
  16. C. J. Kim, H. S. Lee, Y. J. Cho, K. Kang, and M. H. Jo, “Diameter-dependent internal gain in ohmic Ge nanowire photodetectors,” Nano Lett.10(6), 2043–2048 (2010). [CrossRef] [PubMed]
  17. D. Chen, Z. Liu, B. Liang, X. F. Wang, and G. Z. Shen, “Transparent metal oxide nanowire transistors,” Nanoscale4(10), 3001–3012 (2012). [CrossRef] [PubMed]
  18. P. C. Chen, G. Z. Shen, Y. Shi, H. Chen, and C. W. Zhou, “Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes,” ACS Nano4(8), 4403–4411 (2010). [CrossRef] [PubMed]
  19. M. C. McAlpine, H. Ahmad, D. W. Wang, and J. R. Heath, “Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors,” Nat. Mater.6(5), 379–384 (2007). [CrossRef] [PubMed]
  20. F. N. Ishikawa, H. K. Chang, K. Ryu, P. C. Chen, A. Badmaev, L. Gomez De Arco, G. Z. Shen, and C. W. Zhou, “Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates,” ACS Nano3(1), 73–79 (2009). [CrossRef] [PubMed]
  21. G. Z. Shen, J. Xu, X. F. Wang, H. T. Huang, and D. Chen, “Growth of directly transferable In2O3 nanowire mats for transparent thin-film transistor applications,” Adv. Mater.23(6), 771–775 (2011). [CrossRef] [PubMed]
  22. X. F. Wang, W. F. Song, B. Liu, G. Chen, D. Chen, C. W. Zhou, and G. Z. Shen, “High-performance organic-inorganic hybrid photodetectors based on P3HT: CdSe nanowire heterojunctions on rigid and flexible substrates,” Adv. Funct. Mater.23(9), 1202–1209 (2013). [CrossRef]
  23. M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater.5(9), 703–709 (2006). [CrossRef] [PubMed]
  24. G. Shen, P.-C. Chen, K. Ryu, and C. Zhou, “Devices and chemical sensing applications of metal oxide nanowires,” J. Mater. Chem.19(7), 828–839 (2009). [CrossRef]
  25. B. Liu, J. Zhang, X. Wang, G. Chen, D. Chen, C. Zhou, and G. Shen, “Hierarchical three-dimensional ZnCo₂O₄ nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries,” Nano Lett.12(6), 3005–3011 (2012). [CrossRef] [PubMed]
  26. Y. Yu, R. H. Wang, Q. Chen, and L. M. Peng, “High-quality ultralong Sb2S3 nanoribbons on large scale,” J. Phys. Chem. B109(49), 23312–23315 (2005). [CrossRef] [PubMed]
  27. G. C. Chen, B. Dneg, G. B. Cai, T. K. Zhang, W. F. Dong, W. X. Zhang, and A. W. Xu, “The fractal splitting growth of Sb2S3 and Sb2Se3 hierarchical nanostructures,” J. Phys. Chem. C112(3), 672–679 (2008). [CrossRef]
  28. M. Sun, D. Li, W. Li, Y. Chen, Z. Chen, Y. He, and X. Fu, “A new photocatalyst Sb2S3 for degradation of methyl orange under visible light irradiation,” J. Phys. Chem. C112(46), 18076–18081 (2008). [CrossRef]
  29. J. A. Chang, J. H. Rhee, S. H. Im, Y. H. Lee, H. J. Kim, S. I. Seok, M. K. Nazeeruddin, and M. Gratzel, “High-performance nanostructured inorganic-organic heterojunction solar cells,” Nano Lett.10(7), 2609–2612 (2010). [CrossRef] [PubMed]
  30. J. C. Cardoso, C. A. Grimes, X. J. Feng, X. Zhang, S. Komarneni, M. V. Zanoni, and N. Bao, “Fabrication of coaxial TiO2/Sb2S3 nanowire hybrids for efficient nanostructured organic-inorganic thin film photovoltaics,” Chem. Commun. (Camb.)48(22), 2818–2820 (2012). [CrossRef] [PubMed]
  31. G. Z. Shen, D. Chen, K. B. Tang, and Y. T. Qian, “Synthesis of ternary sulfides Cu(Ag)-Bi-S coral-shaped crystals from single-source precursors,” J. Cryst. Growth257(3–4), 293–296 (2003). [CrossRef]
  32. J. Q. Sun, X. P. Shen, L. J. Guo, G. X. Wang, J. Park, and K. Wang, “Solvothermal synthesis of ternary sulfides of Sb2-xBixS3(x=0.4, 1) with 3D flower-like architectures,” Nanoscale Res. Lett.5(2), 364–369 (2010). [CrossRef] [PubMed]
  33. J. C. Cardoso, C. A. Grimes, X. J. Feng, X. Y. Zhang, S. Komarneni, M. V. B. Zanoni, and N. Z. Bao, “Fabrication of coaxial TiO2/Sb2S3 nanowire hybrids for efficient nanostructured organic-inorganic thin film photovoltaics,” Chem. Commun. (Camb.)48(22), 2818–2820 (2012). [CrossRef] [PubMed]
  34. C. P. Liu, H. E. Wang, T. W. Ng, Z. H. Chen, W. F. Zhang, C. Yan, Y. B. Tang, I. Bello, L. Martinu, W. J. Zhang, and S. K. Jha, “Hybrid photovoltaic cells based on ZnO/Sb2S3/P3HT heterojunctions,” Phys. Status Solidi B249(3), 627–633 (2012). [CrossRef]
  35. S. Liu, Z. M. Wei, Y. Cao, L. Gan, Z. X. Wang, W. Xu, X. F. Guo, and D. B. Zhu, “Ultrasensitive water-processed monolayer photodetectors,” Chem. Sci.2(4), 796–802 (2011). [CrossRef]
  36. P. A. Hu, Z. Z. Wen, L. F. Wang, P. H. Tan, and K. Xiao, “Synthesis of few-layer GaSe nanosheets for high performance photodetectors,” ACS Nano6(7), 5988–5994 (2012). [CrossRef] [PubMed]
  37. X. F. Wang, Z. Xie, H. T. Huang, Z. Liu, D. Chen, and G. Z. Shen, “Gas sensors, thermistor and photodetector based on ZnS nanowires,” J. Mater. Chem.22(14), 6845–6850 (2012). [CrossRef]
  38. T. Dufaux, M. Burghard, and K. Kern, “Efficient charge extraction out of nanoscale Schottky contacts to CdS nanowires,” Nano Lett.12(6), 2705–2709 (2012). [CrossRef] [PubMed]
  39. A. A. Tahir, M. A. Ehsan, M. Mazhar, K. G. U. Wijayantha, M. Zeller, and A. D. Hunter, “Photoelectrochemical and photoresponsive properties of Bi2S3 nanotube and nanoparticle thin films,” Chem. Mater.22(17), 5084–5092 (2010). [CrossRef]
  40. R. F. Service, “Materials science. Inorganic electronics begin to flex their muscle,” Science312(5780), 1593–1594 (2006). [CrossRef] [PubMed]
  41. Y. G. Sun and H. H. Wang, “High-performance, flexible hydrogen sensors that use carbon nanotubes decorated with palladium nanoparticles,” Adv. Mater.19(19), 2818–2823 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited