OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 11 — Jun. 3, 2013
  • pp: 13656–13667

Temperature and multi-species measurements by supercontinuum absorption spectroscopy for IC engine applications

Thomas Werblinski, Sascha R. Engel, Rainer Engelbrecht, Lars Zigan, and Stefan Will  »View Author Affiliations


Optics Express, Vol. 21, Issue 11, pp. 13656-13667 (2013)
http://dx.doi.org/10.1364/OE.21.013656


View Full Text Article

Enhanced HTML    Acrobat PDF (14683 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The first supercontinuum (SC) absorption spectroscopy measurements showing the feasibility of quantitative temperature evaluation are presented to the best of the authors’ knowledge. Temperature and multi-species measurements were carried out at a detection rate of ∼2 MHz in a high-temperature flow cell within a temperature range from 450 K to 750 K at 0.22 MPa, representing conditions during the suction and compression stroke in an internal combustion (IC) engine. The broadband SC pulses were temporally dispersed into fast wavelength sweeps, covering the overtone absorption bands 2ν1, 2ν3, ν1 + ν3 of H2O and 3ν3 of CO2 in the near-infrared region from 1330 nm to 1500 nm. The temperature information is inferred from the peak ratio of a temperature sensitive (1362.42 nm) and insensitive (1418.91 nm) absorption feature in the ν1 + ν3 overtone bands of water. The experimental results are in very good agreement with theoretical intensity ratios calculated from absorption spectra based on HiTran data.

© 2013 OSA

OCIS Codes
(120.6780) Instrumentation, measurement, and metrology : Temperature
(300.0300) Spectroscopy : Spectroscopy
(300.1030) Spectroscopy : Absorption

ToC Category:
Spectroscopy

History
Original Manuscript: March 13, 2013
Revised Manuscript: April 19, 2013
Manuscript Accepted: April 19, 2013
Published: May 30, 2013

Citation
Thomas Werblinski, Sascha R. Engel, Rainer Engelbrecht, Lars Zigan, and Stefan Will, "Temperature and multi-species measurements by supercontinuum absorption spectroscopy for IC engine applications," Opt. Express 21, 13656-13667 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-11-13656


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Walewski and S. T. Sanders, “High-resolution wavelength-agile laser source based on pulsed super-continua,” Appl. Phys. B79,415–418 (2004). [CrossRef]
  2. S. T. Sanders, D. W. Mattison, L. Ma, and R. K. Hanson, “Diode-laser sensors for pulse detonation engines” in 2nd Joint Meeting of the US Sections of the Combustion Institute, Oakland, CA, 2001, paper 2001–143.
  3. L. Ma, S. T. Sanders, J. B. Jeffries, and R. K. Hanson, “Monitoring and control of a pulse detonation engine using a diode-laser fuel concentration and temperature sensor,” Proc. Combust. Inst.29,161–166 (2002). [CrossRef]
  4. R. Engelbrecht, “A compact NIR fiber-optic diode laser spectrometer for CO and CO2: Analysis of observed 2f wavelength modulation spectroscopy line shapes,” Spectrochim. Acta, Part A60,3291–3298 (2004). [CrossRef]
  5. S. Gersen, A. V. Mokhov, and H. B. Levinsky, “Extractive probe/TDLAS measurements of acetylene in atmospheric-pressure fuel-rich premixed methane/air flames,” Combust. Flame143,333–336 (2005). [CrossRef]
  6. X. Zhou, J. B. Jeffries, and R. K. Hanson, “Development of a fast temperature sensor for combustion gases using a single tunable diode laser,” Appl. Phys. B81,711–722 (2005). [CrossRef]
  7. D. W. Mattison, J. B. Jeffries, R. K. Hanson, R. R. Steeper, S. De Zilwa, J. E. Dec, M. Sjoberg, and W. Hwang, “In-cylinder gas temperature and water concentration measurements in HCCI engines using a multiplexed-wavelength diode-laser system: Sensor development and initial demonstration,” Proc. Combust. Inst.31,791–798 (2007). [CrossRef]
  8. O. Witzel, A. Klein, S. Wagner, C. Meffert, C. Schulz, and V. Ebert, “High-speed tunable diode laser absorption spectroscopy for sampling-free in-cylinder water vapor concentration measurements in an optical IC engine,” Appl. Phys. B109,521–532 (2012). [CrossRef]
  9. S. T. Sanders, “Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy,” Appl. Phys. B75,799–802 (2002). [CrossRef]
  10. A. R. Alfano, (ed.), The Supercontinuum Laser Source (Springer, 2006). [CrossRef]
  11. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett.21,1547–1549 (1996). [CrossRef] [PubMed]
  12. S. Roy and P. R. Chaudhuri, “Supercontinuum generation in visible to mid-infrared region in square-lattice photonic crystal fiber made from highly nonlinear glasses,” Opt. Commun.282,3448–3455 (2009). [CrossRef]
  13. F. G. Omenetto, N. A. Wolchover, M. R. Wehner, M. Ross, A. Efimov, A. J. Taylor, V. V. R. K. Kumar, A. K. George, J. C. Knight, N. Y. Joly, and P. St. J. Russell, “Spectrally smooth supercontinuum from 350 nm to 3 μm in sub-centimeter lengths of soft-glass photonic crystal fibers,” Opt. Express14,4928–4934 (2006). [CrossRef] [PubMed]
  14. C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett.31,2553–2555 (2006). [CrossRef] [PubMed]
  15. J. H. Kim, M.-K. Chen, C.-E. Yang, J. Lee, K. Shi, Z. Liu, S. Yin, K. Reichard, P. Ruffin, E. Edwards, C. Brantley, and C. Luo, “Broadband supercontinuum generation covering UV to mid-IR region by using three pumping sources in single crystal sapphire fiber,” Opt. Express16,14792–14800 (2008). [CrossRef] [PubMed]
  16. J. Geng, Q. Wang, and S. Jiang, “High-spectral-flatness mid-infrared supercontinuum generated from a Tm-doped fiber amplifier,” Appl. Opt.51,834–840 (2012). [CrossRef] [PubMed]
  17. J. Hult, R. S. Watt, and C. F. Kaminski, “High bandwidth absorption spectroscopy with a dispersed supercontinuum source,” Opt. Express15,11385–11395 (2007). [CrossRef] [PubMed]
  18. C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B92,367–378 (2008). [CrossRef]
  19. Y. Sych, R. Engelbrecht, B. Schmauss, D. Kozlov, T. Seeger, and A. Leipertz, “Broadband time-domain absorption spectroscopy with a ns-pulse supercontinuum source,” Opt. Express18,22762–22771 (2010). [CrossRef] [PubMed]
  20. B. Schenkel, “Supercontinuum Generation and Compression,” Ph.D. Thesis, Swiss Federal Institute of Technology Zurich (2004).
  21. J. W. Walewski, J. A. Filipa, C. L. Hagen, and S. T. Sanders, “Standard single-mode fibers as convenient means for the generation of ultrafast high-pulse-energy super-continua,” Appl. Phys. B83,75–79 (2006). [CrossRef]
  22. R. S. Watt and J. Hult, “Development of a broadband supercontinuum source for high-speed combustion diagnostics,” in Proceedings of the European Combustion Meeting, Chania, Greece, (2007).
  23. R. S. Watt, C. F. Kaminski, and J. Hult, “Generation of supercontinuum radiation in conventional single-mode fibre and its application to broadband absorption spectroscopy,” Appl. Phys. B90,47–53 (2008). [CrossRef]
  24. R. S. Watt, C. F. Kaminski, and J. Hult, “High bandwidth H2O absorption spectroscopy in a flame using a dispersed supercontinuum source,” in Conference on Lasers and Electro-Optics, San Jose, CA, 2008, paper CMH4.
  25. J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, “Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source,” Opt. Express16,10178–10188 (2008). [CrossRef] [PubMed]
  26. M. Schnippering, P. R. Unwin, J. Hult, T. Laurila, C. F. Kaminski, J. M. Langridge, R. L. Jones, M. Mazurenka, and S. R. Mackenzie, “Evanescent wave broadband cavity enhanced absorption spectroscopy using supercontinuum radiation: A new probe of electrochemical processes,” Electrochem. commun.10,1827–1830 (2008). [CrossRef]
  27. C. F. Kaminski, J. Hult, and T. Laurila, “Supercontinuum radiation for optical sensing,” in Conference on Lasers and Electro-Optics, Baltimore, MD, 2010, paper CMJ1.
  28. T. Laurila, I. S. Burns, J. Hult, J. H. Miller, and C. F. Kaminski, “A calibration method for broad-bandwidth cavity enhanced absorption spectroscopy performed with supercontinuum radiation,” Appl. Phys. B102,271–278 (2011). [CrossRef]
  29. L. A. Kranendonk, A. W. Caswell, and S. T. Sanders, “Robust method for calculating temperature, pressure, and absorber mole fraction from broadband spectra,” Appl. Opt.46,4117–4124 (2007). [CrossRef] [PubMed]
  30. X. Zhou, X. Liu, J. B. Jeffries, and R. K. Hanson, “Selection of NIR H2O absorption transitions for in-cylinder measurement of temperature in IC engines,” Meas. Sci. Technol.16,2437–2445 (2005). [CrossRef]
  31. http://cfa-www.harvard.edu/HITRAN/
  32. L. Gruener-Nielsen, M. Wandel, P. Kristensen, C. Jorgensen, L. V. Jorgensen, B. Evold, B. Pálsdóttier, and D. Jakobson, “Dispersion-compensating fibers,” J. Lightwave Technol.23,3566–3579 (2005). [CrossRef]
  33. J. Trost, L. Zigan, and A. Leipertz, “Quantitative vapor temperature imaging in DISI-sprays at elevated pressures and temperatures using two-line excitation laser-induced fluorescence,” Proc. Combust. Inst.34,3645–3652 (2013). [CrossRef]
  34. R. R. Gamache and L. Rothmann, “Extension of HiTran database to non-LTE applications,” J. Quant. Spectrosc. Radiat. Transfer48,519–529 (1992). [CrossRef]
  35. J. J. Olivero and R. L. Longbothum, “Empirical fits to the Voigt line width: a brief review” J. Quant. Spectrosc. Radiat. Transfer17,233–236 (1977). [CrossRef]
  36. L. S. Rothmann, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HiTemp, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer111,2139–2150 (2010). [CrossRef]
  37. V. Mazet, C. Carteret, D. Brie, J. Idier, and B. Humbert, “Background removal from spectra by designing and minimising a non-quadratic cost function,” Chemom. Intell. Lab. Syst.76,121–133 (2005). [CrossRef]
  38. J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78,1135–1184 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited