OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 11 — Jun. 3, 2013
  • pp: 13699–13709

Elastico-mechanoluminescence in CaZr(PO4)2:Eu2+ with multiple trap levels

Jun-Cheng Zhang, Chao-Nan Xu, and Yun-Ze Long  »View Author Affiliations


Optics Express, Vol. 21, Issue 11, pp. 13699-13709 (2013)
http://dx.doi.org/10.1364/OE.21.013699


View Full Text Article

Enhanced HTML    Acrobat PDF (1452 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on a novel elastico-mechanoluminescence (EML) phosphor of CaZr(PO4)2:Eu2+ for simultaneous luminescent sensing and imaging to mechanical load by the light-emitting of Eu2+ ions. The EML properties of CaZr(PO4)2:Eu2+ show an intense luminance (above 15 mcd m−2), a low load threshold (below 5 N), a broad measurement range for the dynamic load (up to 2000 N), and an accurate linear relationship of EML intensity against the applied load. The excellent EML characteristics are considered to originate from the piezoelectric crystal structure and the multiple trap levels with appropriate depths. An EML mechanism based on the electrons as the main charge carriers is proposed.

© 2013 OSA

OCIS Codes
(040.0040) Detectors : Detectors
(260.3800) Physical optics : Luminescence
(280.5475) Remote sensing and sensors : Pressure measurement

ToC Category:
Sensors

History
Original Manuscript: April 19, 2013
Revised Manuscript: May 14, 2013
Manuscript Accepted: May 14, 2013
Published: May 31, 2013

Citation
Jun-Cheng Zhang, Chao-Nan Xu, and Yun-Ze Long, "Elastico-mechanoluminescence in CaZr(PO4)2:Eu2+ with multiple trap levels," Opt. Express 21, 13699-13709 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-11-13699


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Walton, “Triboluminescence,” Adv. Phys.26(6), 887–948 (1977). [CrossRef]
  2. B. P. Chandra, “Mechanoluminescence,” in Luminescence of Solids, edited by D. R. Vij (Plenum Press, 1988), 361.
  3. C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett.74(9), 1236–1238 (1999). [CrossRef]
  4. C. N. Li, C. N. Xu, Y. Imai, and N. Bu, “Xu, Y. Imai, and N. Bu, “Real-time visualisation of the Portevin-Le Chatelier effect with mechanoluminescent-sensing film,” Strain47(6), 483–488 (2011). [CrossRef]
  5. N. Terasaki, H. Yamada, and C. N. Xu, “Ultrasonic wave induced mechanoluminescence and its application for photocatalysis as ubiquitous light source,” Catal. Today201, 203–208 (2013). [CrossRef]
  6. V. K. Chandra and B. P. Chandra, “Dynamics of the mechanoluminescence induced by elastic deformation of persistent luminescent crystals,” J. Lumin.132(3), 858–869 (2012). [CrossRef]
  7. X. Wang, C. N. Xu, H. Yamada, K. Nishikubo, and X. G. Zheng, “Electro-mechano-optical conversions in Pr3+-doped BaTiO3-CaTiO3 ceramics,” Adv. Mater.17(10), 1254–1258 (2005). [CrossRef]
  8. C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescenc,” Appl. Phys. Lett.74(17), 2414–2416 (1999). [CrossRef]
  9. S. Kamimura, H. Yamada, and C. N. Xu, “Strong reddish-orange light emission from stress-activated Srn+1SnnO3n+1:Sm3+ (n=1, 2, ∞) with perovskite-related structures,” Appl. Phys. Lett.101(9), 091113 (2012). [CrossRef]
  10. J. Botterman, K. V. Eeckhout, I. D. Baere, D. Poelman, and P. F. Smet, “Mechanoluminescence in BaSi2O2N2:Eu,” Acta Mater.60(15), 5494–5500 (2012). [CrossRef]
  11. J. C. Zhang, X. Wang, X. Yao, C. N. Xu, and H. Yamada, “Strong Elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ with self-assembled sandwich architectures,” J. Electrochem. Soc.157(12), G269–G273 (2010). [CrossRef]
  12. C. Bettinali, A. Grandin, and M. Valigi, ““Calcium zirconium phosphate-preparation and crystallographic characteristics,” Lincei,” Classe Sci. Fis. Mat. Nat.33, 472–476 (1962).
  13. Z. J. Zhang, J. L. Yuan, X. J. Wang, D. B. Xiong, H. H. Chen, J. T. Zhao, Y. B. Fu, Z. M. Qi, G. B. Zhang, and C. S. Shi, “Luminescence properties of CaZr(PO4)2:RE (RE = Eu3+, Tb3+, Tm3+) under x-ray and VUV–UV excitation,” J. Phys. D Appl. Phys.40(7), 1910–1914 (2007). [CrossRef]
  14. K. Fukuda and K. Fukutani, “Crystal structure of calcium zirconium diorthophosphate, CaZr(PO4)2,” Powder Diffr.18(4), 296–300 (2003). [CrossRef]
  15. R. D. Shannon, “Revised effective ionicradii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32(5), 751–767 (1976). [CrossRef]
  16. J. F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford Press, 1985)
  17. Y. Liu and C. N. Xu, “Electroluminescent ceramics excited by low electrical field,” Appl. Phys. Lett.84(24), 5016–5018 (2004). [CrossRef]
  18. M. Kaneyoshi, “Luminescence of some zirconium-containing compounds under vacuum ultraviolet excitation,” J. Lumin.121(1), 102–108 (2006). [CrossRef]
  19. V. Petrykin and M. Kakihana, “Direct synthesis of BaAl2S4:Eu2+ blue emission phosphor by one-step sulfurization of highly homogeneous oxide precursor prepared via a solution-based method,” Chem. Mater.20(16), 5128–5130 (2008). [CrossRef]
  20. T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B110(10), 4589–4598 (2006). [CrossRef] [PubMed]
  21. C. N. Xu, in “Encyclopedia of Smart Materials,” edited by M. Schwartz (Wiley, New York, 2002) 1, 190.
  22. K. V. D. Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials3(4), 2536–2566 (2010). [CrossRef]
  23. J. C. Zhang, X. Wang, and X. Yao, “Enhancement of luminescence and afterglow in CaTiO3:Pr3+ by Zr substitution for Ti,” J. Alloy. Comp.498(2), 152–156 (2010). [CrossRef]
  24. H. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Green mechanoluminescence of Ca2MgSi2O7:Eu and Ca2MgSi2O7:Eu,Dy,” J. Electrochem. Soc.155(2), J55–J57 (2008). [CrossRef]
  25. T. Z. Zhan, C. N. Xu, H. Yamada, Y. Terasawa, L. Zhang, H. Iwased, and M. Kawaid, “Enhancement of afterglow in SrAl2O4:Eu2+ long-lasting phosphor with swift heavy ion irradiation,” RSC Advances2(1), 328–332 (2011). [CrossRef]
  26. J. R. Hird, A. Chakravarty, and A. J. Walton, “Triboluminescence from diamond,” J. Phys. D40(5), 1464–1472 (2007). [CrossRef]
  27. W. Hoogenstraaten, “Electron traps in zinc-sulfide phosphors,” Philips Res. Rep.13(6), 515–693 (1958).
  28. R. Sakai, T. Katsumata, S. Komuro, and T. Morikawa, “Effect of composition on the phosphorescence from BaAl2O4:Eu2+, Dy3+ crystals,” J. Lumin.85(1–3), 149–154 (1999). [CrossRef]
  29. A. Meijerink, W. J. Schipper, and G. Blasse, “Photostimulated luminescence and thermally stimulated luminescence of Y2SiO5-Ce,Sm,” J. Phys. D Appl. Phys.24(6), 997–1002 (1991). [CrossRef]
  30. N. Kodama, T. Takahashi, M. Yamaga, Y. Tanii, J. Qiu, and K. Hirao, “Long-lasting phosphorescence in Ce3+-doped Ca2Al2SiO7 and CaYAl3O7 crystals,” Appl. Phys. Lett.75(12), 1715–1717 (1999). [CrossRef]
  31. H. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Blue light emission from stress-activated CaYAl3O7:Eu,” J. Electrochem. Soc.155(5), J128–J131 (2008). [CrossRef]
  32. B. Henderson, “Defects in Crystalline Solids,” (London: Arnold, 1972), 2.
  33. J. Hölsä, T. Aitasalo, M. Lastusaari, J. Niittykoski, and G. Spano, “Role of defect states in persistent luminescence materials,” J. Alloy. Comp.374(1–2), 56–59 (2004). [CrossRef]
  34. P. Dorenbos, “The Eu3+ charge transfer energy and the relation with the band gap of compounds,” J. Lumin.111(1–2), 89–104 (2005). [CrossRef]
  35. T. Kattsumata, R. Sakai, S. Komuro, and T. Morikawa, “Thermally stimulated and photostimulated luminescence from long duration phosphorescent SrAl2O4:Eu,Dy crystals,” J. Electrochem. Soc.150(5), H111–H114 (2003). [CrossRef]
  36. H. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Ultraviolet mechanoluminescence from SrAl2O4:Ce and SrAl2O4:Ce,Ho,” Appl. Phys. Lett.91(8), 081905 (2007). [CrossRef]
  37. K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and x-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: evidence for valence state changes,” Phys. Rev. B84(8), 085140 (2011). [CrossRef]
  38. H. Yamamoto and T. Matsuzawa, “Mechanism of long phosphorescence of SrAl2O4:Eu2+,Dy3+ and CaAl2O4:Eu2+,Nd3+,” J. Lumin.72–74, 287–289 (1997). [CrossRef]
  39. V. K. Chandra, B. P. Chandra, and P. Jha, “Models for intrinsic and extrinsic elastico and plastico-mechanoluminescence of solids,” J. Lumin.138, 267–280 (2013). [CrossRef]
  40. K. Kato, I. Tsutai, T. Kamimura, F. Kaneko, K. Shinbo, M. Ohta, and T. Kawakami, “Thermoluminescence properties of SrAl2O4:Eu sputtered films with long phosphorescence,” J. Lumin.82(3), 213–220 (1999). [CrossRef]
  41. J. Qiu, M. Kawasaki, K. Tanaka, Y. Shimizugawa, and K. Hirao, “Phenomenon and mechanism of long-lasting phosphorescence in Eu2+-doped aluminosilicate glasses,” J. Phys. Chem. Solids59(9), 1521–1525 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited