OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 11 — Jun. 3, 2013
  • pp: 13726–13732

Supercritical xenon-filled hollow-core photonic bandgap fiber

K. E. Lynch-Klarup, E. D. Mondloch, M. G. Raymer, D. Arrestier, F. Gerome, and F. Benabid  »View Author Affiliations


Optics Express, Vol. 21, Issue 11, pp. 13726-13732 (2013)
http://dx.doi.org/10.1364/OE.21.013726


View Full Text Article

Enhanced HTML    Acrobat PDF (1347 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate that filling a hollow-core photonic-bandgap fiber with supercritical xenon creates a medium with a controllable density up to several hundred times that at STP, while working at room temperature. The high compressibility of the supercritical fluid allows rapid tuning of the spectral guidance window by making small changes of gas pressure near the critical point. We discuss potential applications of this system in linear and nonlinear optics.

© 2013 OSA

OCIS Codes
(160.4760) Materials : Optical properties
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: March 14, 2013
Revised Manuscript: April 29, 2013
Manuscript Accepted: May 2, 2013
Published: May 31, 2013

Citation
K. E. Lynch-Klarup, E. D. Mondloch, M. G. Raymer, D. Arrestier, F. Gerome, and F. Benabid, "Supercritical xenon-filled hollow-core photonic bandgap fiber," Opt. Express 21, 13726-13732 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-11-13726


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol.24(12), 4729–4749 (2006). [CrossRef]
  2. F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt.58(2), 87–124 (2011). [CrossRef]
  3. D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003). [CrossRef] [PubMed]
  4. F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett.93(12), 123903 (2004). [CrossRef] [PubMed]
  5. R. Thapa, K. Knabe, M. Faheem, A. Naweed, O. L. Weaver, and K. L. Corwin, “Saturated absorption spectroscopy of acetylene gas inside large-core photonic bandgap fiber,” Opt. Lett.31(16), 2489–2491 (2006). [CrossRef] [PubMed]
  6. K. E. Lynch-Klarup, E. Mondloch, M. G. Raymer, F. Benabid, F. Gerome, and D. Arrestier, “Supercritical-xenon-filled photonic crystal fiber as a Raman-free nonlinear optical medium,” in Frontiers in Optics Conference, OSA Technical Digest (online) (Optical Society of America, 2012), paper FM4I.2 http://www.opticsinfobase.org/abstract.cfm?URI=FiO-2012-FM4I.2 [CrossRef]
  7. T. Birks, D. Bird, T. Hedley, J. Pottage, and P. Russell, “Scaling laws and vector effects in bandgap-guiding fibres,” Opt. Express12(1), 69–74 (2004). [CrossRef] [PubMed]
  8. G. Antonopoulos, F. Benabid, T. A. Birks, D. M. Bird, J. C. Knight, and P. St. J. Russell, “Experimental demonstration of the frequency shift of bandgaps in photonic crystal fibers due to refractive index scaling,” Opt. Express14(7), 3000–3006 (2006). [CrossRef] [PubMed]
  9. A. Hitachi, V. Chepel, M. I. Lopes, and V. N. Solovov, “New approach to the calculation of the refractive index of liquid and solid xenon,” J. Chem. Phys.123(23), 234508 (2005). [CrossRef] [PubMed]
  10. E. W. Lemmon, M. O. McLinden, and D. G. Friend, “Thermophysical properties of fluid systems” in NIST Chemistry Webbook, Nist Standard Reference Database Number 69, Eds. P.J. Linstrom and W.G. Mallard, National Institute of Standards and Technology, Gaithersburg MD, 20899, http://webbook.nist.gov , (retrieved November 13, 2012).
  11. G. Humbert, J. C. Knight, G. Bouwmans, P. St. J. Russell, D. P. Williams, P. Roberts, and B. J. Mangan, “Hollow core photonic crystal fibers for beam delivery,” Opt. Express12(8), 1477–1484 (2004). [CrossRef] [PubMed]
  12. M. Azhar, G. K. L. Wong, W. Chang, N. Y. Joly, and P. St. J. Russell, “Raman-free nonlinear optical effects in high pressure gas-filled hollow core PCF,” Opt. Express21(4), 4405–4410 (2013). [CrossRef] [PubMed]
  13. C. Brée, A. Demircan, and G. Steinmeyer, “Method for computing the nonlinear refractive index via Keldysh theory,” IEEE J. Quantum Electron.46(4), 433–437 (2010). [CrossRef]
  14. D. Milam, “Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica,” Appl. Opt.37(3), 546–550 (1998). [CrossRef] [PubMed]
  15. X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett.94(5), 053601 (2005). [CrossRef] [PubMed]
  16. R. F. Dong, J. Heersink, J. F. Corney, P. D. Drummond, U. L. Andersen, and G. Leuchs, “Experimental evidence for Raman-induced limits to efficient squeezing in optical fibers,” Opt. Lett.33(2), 116–118 (2008). [CrossRef] [PubMed]
  17. M. A. Weinberger and W. G. Schneider, “On the liquid-vapor coexistence curve of xenon in the region of the critical temperature,” Can. J. Chem.30(5), 422–437 (1952). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited