OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 11 — Jun. 3, 2013
  • pp: 13758–13772

Snapshot 3D optical coherence tomography system using image mapping spectrometry

Thuc-Uyen Nguyen, Mark C Pierce, Laura Higgins, and Tomasz S Tkaczyk  »View Author Affiliations

Optics Express, Vol. 21, Issue 11, pp. 13758-13772 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (6649 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A snapshot 3-Dimensional Optical Coherence Tomography system was developed using Image Mapping Spectrometry. This system can give depth information (Z) at different spatial positions (XY) within one camera integration time to potentially reduce motion artifact and enhance throughput. The current (x,y,λ) datacube of (85×356×117) provides a 3D visualization of sample with 400 μm depth and 13.4 μm in transverse resolution. Axial resolution of 16.0 μm can also be achieved in this proof-of-concept system. We present an analysis of the theoretical constraints which will guide development of future systems with increased imaging depth and improved axial and lateral resolutions.

© 2013 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Imaging Systems

Original Manuscript: February 25, 2013
Revised Manuscript: April 26, 2013
Manuscript Accepted: May 22, 2013
Published: May 31, 2013

Virtual Issues
Vol. 8, Iss. 7 Virtual Journal for Biomedical Optics

Thuc-Uyen Nguyen, Mark C Pierce, Laura Higgins, and Tomasz S Tkaczyk, "Snapshot 3D optical coherence tomography system using image mapping spectrometry," Opt. Express 21, 13758-13772 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. C.  Adler, C.  Zhou, T.-H.  Tsai, J.  Schmitt, Q.  Huang, H.  Mashimo, J. G.  Fujimoto, “Three-dimensional endomicroscopy of the human colon using optical coherence tomography.” Opt Express 17, 784–796 (2009). [CrossRef] [PubMed]
  2. K.  Yi, M.  Mujat, B. H.  Park, W.  Sun, J. W.  Miller, J. M.  Seddon, L. H.  Young, J. F.  de Boer, T. C.  Chen, “Spectral domain optical coherence tomography for quantitative evaluation of drusen and associated structural changes in non-neovascular age-related macular degeneration.” Br J Ophthalmol 93, 176–181 (2009). [CrossRef]
  3. E.  Osiac, A.  Saftoiu, D. I.  Gheonea, I.  Mandrila, R.  Angelescu, “Optical coherence tomography and Doppler optical coherence tomography in the gastrointestinal tract.” World J Gastroenterol 17, 15–20 (2011). [CrossRef] [PubMed]
  4. R.  de Kinkelder, J.  Kalkman, D. J.  Faber, O.  Schraa, P. H. B.  Kok, F. D.  Verbraak, T. G.  van Leeuwen, “Heartbeat-induced axial motion artifacts in optical coherence tomography measurements of the retina.” Invest Ophthalmol Vis Sci 52, 3908–3913 (2011). [CrossRef] [PubMed]
  5. J. F.  de Boer, B.  Cense, B. H.  Park, M. C.  Pierce, G. J.  Tearney, B. E.  Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography.” Opt Lett 28, 2067–2069 (2003). [CrossRef] [PubMed]
  6. R.  Leitgeb, C.  Hitzenberger, A.  Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography.” Opt Express 11, 889–894 (2003). [CrossRef] [PubMed]
  7. N.  Hagen, R. T.  Kester, L.  Gao, T. S.  Tkaczyk, “Snapshot advantage: a review of the light collection improvement for parallel high-dimensional measurement systems.” Opt Eng 51(2012). [CrossRef]
  8. Y.  Chen, A. D.  Aguirre, P.-L.  Hsiung, S.  Desai, P. R.  Herz, M.  Pedrosa, Q.  Huang, M.  Figueiredo, S.-W.  Huang, A.  Koski, J. M.  Schmitt, J. G.  Fujimoto, H.  Mashimo, “Ultrahigh resolution optical coherence tomography of Barrett’s esophagus: preliminary descriptive clinical study correlating images with histology.” Endoscopy 39, 599–605 (2007). [CrossRef] [PubMed]
  9. Y.  Nakamura, S.  Makita, M.  Yamanari, M.  Itoh, T.  Yatagai, Y.  Yasuno, “High-speed three-dimensional human retinal imaging by line-field spectral domain optical coherence tomography,” Opt. Express 15, 7103–7116 (2007). [CrossRef] [PubMed]
  10. A.  Dubois, J.  Moreau, C.  Boccara, “Spectroscopic ultrahigh-resolution full-field optical coherence microscopy.” Opt Express 16, 17082–17091 (2008). [CrossRef] [PubMed]
  11. B.  Grajciar, M.  Pircher, A.  Fercher, R.  Leitgeb, “Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye.” Opt Express 13, 1131–1137 (2005). [CrossRef] [PubMed]
  12. Y.  Watanabe, K.  Yamada, M.  Sato, “Three-dimensional imaging by ultrahigh-speed axial-lateral parallel time domain optical coherence tomography.” Opt Express 14, 5201–5209 (2006). [CrossRef] [PubMed]
  13. S.  Witte, M.  Baclayon, E. J. G.  Peterman, R. F. G.  Toonen, H. D.  Mansvelder, M. L.  Groot, “Single-shot two-dimensional full-range optical coherence tomography achieved by dispersion control.” Opt Express 17, 11335–11349 (2009). [CrossRef] [PubMed]
  14. K.  Grieve, A.  Dubois, M.  Simonutti, M.  Paques, J.  Sahel, J.-F. L.  Gargasson, C.  Boccara, “In vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography.” Opt Express 13, 6286–6295 (2005). [CrossRef] [PubMed]
  15. M. S.  Hrebesh, R.  Dabu, M.  Sato, “In vivo imaging of dynamic biological specimen by real-time single-shot full-field optical coherence tomography,” Opt Comm 282, 674–683 (2009). [CrossRef]
  16. H. M.  Subhash, “Review article: Full-field and single-shot full-field optical coherence tomography: A novel technique for biomedical imaging applications,” Advances in Optical Technologies 2012(2012). [CrossRef]
  17. B. K.  Ford, C. E.  Volin, S. M.  Murphy, R. M.  Lynch, M. R.  Descour, “Computed tomography-based spectral imaging for fluorescence microscopy.” Biophys J 80, 986–993 (2001). [CrossRef] [PubMed]
  18. B.  Ford, M.  Descour, R.  Lynch, “Large-image-format computed tomography imaging spectrometer for fluorescence microscopy.” Opt Express 9, 444–453 (2001). [CrossRef] [PubMed]
  19. C. A.  Fernandez, A.  Wagadarikar, D. J.  Brady, S. C.  McCain, T.  Oliver, “Fluorescence microscopy with a coded aperture snapshot spectral imager,” 7184, 71840Z–71840Z-11 (2009).
  20. C. F.  Cull, K.  Choi, D. J.  Brady, T.  Oliver, “Identification of fluorescent beads using a coded aperture snapshot spectral imager.” Appl Opt 49, B59–B70 (2010). [CrossRef] [PubMed]
  21. A.  Gorman, D. W.  Fletcher-Holmes, A. R.  Harvey, “Generalization of the Lyot filter and its application to snapshot spectral imaging.” Opt Express 18, 5602–5608 (2010). [CrossRef] [PubMed]
  22. A.  Bodkin, A.  Sheinis, A.  Norton, J.  Daly, C.  Roberts, S.  Beaven, J.  Weinheimer, eds., Video-rate chemical identification and visualization with snapshot hyperspectral imaging, vol. 8374 (2012).
  23. J.  Kriesel, G.  Scriven, N.  Gat, S.  Nagaraj, P.  Willson, V.  Swaminathan, eds., Snapshot hyperspectral fovea vision system (HyperVideo)(2012).
  24. L.  Gao, R. T.  Kester, N.  Hagen, T. S.  Tkaczyk, “Snapshot image mapping spectrometer (IMS) with high sampling density for hyperspectral microscopy.” Opt Express 18, 14330–14344 (2010). [CrossRef] [PubMed]
  25. L.  Gao, R. T.  Kester, T. S.  Tkaczyk, “Compact image slicing spectrometer (ISS) for hyperspectral fluorescence microscopy.” Opt Express 17, 12293–12308 (2009). [CrossRef] [PubMed]
  26. L.  Gao, N.  Bedard, N.  Hagen, R. T.  Kester, T. S.  Tkaczyk, “Depth-resolved image mapping spectrometer (IMS) with structured illumination.” Opt Express 19, 17439–17452 (2011). [CrossRef] [PubMed]
  27. N.  Bedard, N.  Hagen, L.  Gao, T. S.  Tkaczyk, “Image mapping spectrometry: calibration and characterization.” Opt Eng 51(2012). [CrossRef] [PubMed]
  28. R. T.  Kester, L.  Gao, T. S.  Tkaczyk, “Development of image mappers for hyperspectral biomedical imaging applications.” Appl Opt 49, 1886–1899 (2010). [CrossRef] [PubMed]
  29. L. S.  Gao T. S.  Tkaczyk, “Correction of vignetting and distortion errors induced by two-axis light beam steering,” Optical Engineering 51(2012). [CrossRef]
  30. A. D.  Elliott, L.  Gao, A.  Ustione, N.  Bedard, R.  Kester, D. W.  Piston, T. S.  Tkaczyk, “Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer (IMS).” J Cell Sci (2012). [CrossRef]
  31. I.  Abdulhalim, “Competence between spatial and temporal coherence in full field optical coherence tomography and interference microscopy,” Journal of Optics A: Pure and Applied Optics 8(2006). [CrossRef]
  32. M.  Mujat, B. H.  Park, B.  Cense, T. C.  Chen, J. F.  de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination.” J Biomed Opt 12, 041205 (2007). [CrossRef] [PubMed]
  33. C.  Dorrer, “Influence of the calibration of the detector on spectral interferometry,” J. Opt. Soc. Am. B 16, 1160–1168 (1999). [CrossRef]
  34. L.  Lepetit, G.  Chriaux, M.  Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12, 2467–2474 (1995). [CrossRef]
  35. M.  Wojtkowski, V.  Srinivasan, T.  Ko, J.  Fujimoto, A.  Kowalczyk, J.  Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation.” Opt Express 12, 2404–2422 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited