OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 11 — Jun. 3, 2013
  • pp: 13800–13809

Two-axis MEMS scanner with transfer-printed high-reflectivity, broadband monolithic silicon photonic crystal mirrors

Jae-Woong Jeong, Bryan Park, Hohyun Keum, Seok Kim, John A. Rogers, and Olav Solgaard  »View Author Affiliations


Optics Express, Vol. 21, Issue 11, pp. 13800-13809 (2013)
http://dx.doi.org/10.1364/OE.21.013800


View Full Text Article

Enhanced HTML    Acrobat PDF (3483 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a two-axis electrostatic MEMS scanner with high-reflectivity monolithic single-crystal-silicon photonic crystal (PC) mirrors suitable for applications in harsh environments. The reflective surfaces of the MEMS scanner are transfer-printed PC mirrors with low polarization dependence, low angular dependence, and reflectivity over 85% in the wavelength range of 1490nm~1505nm and above 90% over the wavelength band of 1550~1570nm. In static mode, the scanner has total scan range of 10.2° on one rotation axis and 7.8° on the other. Dynamic operation on resonance increase the scan range to 21° at 608Hz around the outer rotation axis and 9.5° at 1.73kHz about the inner rotation axis.

© 2013 OSA

OCIS Codes
(220.4000) Optical design and fabrication : Microstructure fabrication
(220.4241) Optical design and fabrication : Nanostructure fabrication
(230.4685) Optical devices : Optical microelectromechanical devices
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optical Devices

History
Original Manuscript: April 3, 2013
Revised Manuscript: May 24, 2013
Manuscript Accepted: May 24, 2013
Published: May 31, 2013

Citation
Jae-Woong Jeong, Bryan Park, Hohyun Keum, Seok Kim, John A. Rogers, and Olav Solgaard, "Two-axis MEMS scanner with transfer-printed high-reflectivity, broadband monolithic silicon photonic crystal mirrors," Opt. Express 21, 13800-13809 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-11-13800


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Akiyama, F. J. Grawert, J. Liu, K. Wada, G. K. Celler, L. C. Kimerling, and F. X. Kaertner, “Fabrication of highly reflecting epitaxy-ready Si–SiO2 Bragg reflectors,” IEEE Photon. Technol. Lett.17(7), 1456–1458 (2005). [CrossRef]
  2. S. Fan and J. D. Joannopoulos, “Analysis of guided resonance in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002). [CrossRef]
  3. V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express12(8), 1575–1582 (2004). [CrossRef] [PubMed]
  4. C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband Mirror Using Low-Index Cladded Subwavelength Grating,” IEEE Photon. Technol. Lett.16(2), 518–520 (2004). [CrossRef]
  5. O. Kilic, S. Kim, W. Suh, Y.-A. Peter, A. S. Sudbø, M. F. Yanik, S. Fan, and O. Solgaard, “Photonic crystal slabs demonstrating strong broadband suppression of transmission in the presence of disorders,” Opt. Lett.29(23), 2782–2784 (2004). [CrossRef] [PubMed]
  6. W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett.82(13), 1999–2001 (2003). [CrossRef]
  7. K. B. Crozier, V. Lousse, O. Kilic, S. Kim, W. Suh, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and nearinfrared wavelengths,” Phys. Rev. B73(11), 115126 (2006). [CrossRef]
  8. Y. Ohira, A. Checkovsky, T. Yamanoi, T. Endo, H. Fujita, and H. Toshiyoshi, “A high-power handling MEMS optical scanner for display applications,” in Proceedings of IEEE/LEOS Conference on Optical MEMS and Nanophotonics (Institute of Electrical and Electronics Engineers, Freiburg, Germany, 2008), pp. 70–71. [CrossRef]
  9. G. Brown, G. Thursby, W. Johnstone, and D. Uttamchandani, “MEMS beam steering for high power fiber lasers,” in Proceedings of 4th EMRS DTC Tech. Conference (Edinburgh, U.K., 2007), B9.
  10. E. Stapparts, K. Baker, D. Gavel, S. Wilks, S. Olivier, and J. Brase, “Coherent communications, imaging and targeting,” in Proceedings of IEEE Conference on Aerospace (Institute of Electrical and Electronics Engineers, 2004), pp. 1105–1116.
  11. I. W. Jung, S. Kim, and O. Solgaard, “High-reflectivity broadband photonic crystal mirror MEMS scanner with low dependence on incident angle and polarization,” J. Microelectromech. Syst.18(4), 924–932 (2009). [CrossRef]
  12. I. W. Jung, S. B. Mallick, and O. Solgaard, “A large-area high-reflectivity broadband monolithic single-crystal-silicon photonic crystal mirror MEMS scanner with low dependence on incident angle and polarization,” IEEE J. Sel. Top. Quantum Electron.15(5), 1447–1454 (2009). [CrossRef]
  13. S. Hadzialic, S. Kim, A. F. Sarioglu, A. S. Sudbø, and O. Solgaard, “Displacement Sensing With a Mechanically Tunable Photonic Crystal,” IEEE Photon. Technol. Lett.22(16), 1196–1198 (2010). [CrossRef]
  14. S. Kim, J. Wu, A. Carlson, S. H. Jin, A. Kovalsky, P. Glass, Z. Liu, N. Ahmed, S. L. Elgan, W. Chen, P. M. Ferreira, M. Sitti, Y. Huang, and J. A. Rogers, “Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing,” Proc. Natl. Acad. Sci. U.S.A.107(40), 17095–17100 (2010). [CrossRef] [PubMed]
  15. T. D. Wang, M. J. Mandella, C. H. Contag, and G. S. Kino, “Dual-axis confocal microscope for high-resolution in vivo imaging,” Opt. Lett.28(6), 414–416 (2003). [CrossRef] [PubMed]
  16. J.-W. Jeong, S. Kim, and O. Solgaard, “Split-frame gimbaled two-dimensional MEMS scanner for miniature dual-axis confocal microendoscopes fabricated by front-side processing,” J. Microelectromech. Syst.21(2), 308–315 (2012). [CrossRef]
  17. D.-H. Kim, Z. Liu, Y.-S. Kim, J. Wu, J. Song, H.-S. Kim, Y. Huang, K.-C. Hwang, Y. Zhang, and J. A. Rogers, “Optimized structural designs for stretchable silicon integrated circuits,” Small5(24), 2841–2847 (2009). [CrossRef] [PubMed]
  18. M. K. Chaudhury and G. M. Whitesides, “Direct measurement of interfacial interactions between semispherical lens and flat sheets of poly(dimethylsiloxane) and their chemical derivatives,” Langmuir7(5), 1013–1025 (1991). [CrossRef]
  19. C. Harendt, H.-G. Graf, B. Hofflinger, and E. Penteker, “Silicon fusion bonding and its characterization,” J. Micromech. Microeng.2(3), 113–116 (1992). [CrossRef]
  20. D. Zhao, Z. Ma, and W. Zhou, “Design of dielectric photonic crystal reflector Fabry-Perot cavities,” Proc. SPIE7756, 775610, 775610-9 (2010). [CrossRef]
  21. C. Ataman and H. Urey, “Nonlinear frequency response of Comb-Driven Microscanners,” Proc. SPIE5348, 166–174 (2004). [CrossRef]
  22. A. M. Elshurafa, K. Khirallah, H. H. Tawfik, A. Emira, A. K. S. Abdel Aziz, and S. M. Sedky, “Nonlinear dynamics of spring softening and hardening in folded-MEMS comb drive resonators,” J. Microelectromech. Syst.20(4), 943–958 (2011). [CrossRef]
  23. J. O. Grepstad, P. Kaspar, O. Solgaard, I.-R. Johansen, and A. S. Sudbø, “Photonic-crystal membranes for optical detection of single nano-particles, designed for biosensor application,” Opt. Express20(7), 7954–7965 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited