OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 11 — Jun. 3, 2013
  • pp: 13864–13874

Spectrally modulated stimulated Raman scattering imaging with an angle-to-wavelength pulse shaper

Delong Zhang, Mikhail N. Slipchenko, Daniel E. Leaird, Andrew M. Weiner, and Ji-Xin Cheng  »View Author Affiliations

Optics Express, Vol. 21, Issue 11, pp. 13864-13874 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (4297 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The stimulated Raman scattering signal is often accompanied by unwanted background arising from other pump-probe modalities. We demonstrate an approach to overcome this challenge based on spectral domain modulation, enabled by a compact, cost-effective angle-to-wavelength pulse shaper. The pulse shaper switches between two spectrally narrow windows, which are cut out of a broadband femtosecond pulse and selected for on- and off- Raman resonance excitation, at 2.1 MHz frequency for detection of stimulated Raman scattering signal. Such spectral modulation reduced the unwanted pump-probe signals by up to 20 times and enabled stimulated Raman scattering imaging of molecules in a pigmented environment.

© 2013 OSA

OCIS Codes
(290.5910) Scattering : Scattering, stimulated Raman
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:

Original Manuscript: March 21, 2013
Revised Manuscript: May 12, 2013
Manuscript Accepted: May 16, 2013
Published: May 31, 2013

Virtual Issues
Vol. 8, Iss. 7 Virtual Journal for Biomedical Optics

Delong Zhang, Mikhail N. Slipchenko, Daniel E. Leaird, Andrew M. Weiner, and Ji-Xin Cheng, "Spectrally modulated stimulated Raman scattering imaging with an angle-to-wavelength pulse shaper," Opt. Express 21, 13864-13874 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J.-X. Cheng and X. S. Xie, Coherent Raman Scattering Microscopy (Taylor & Francis, 2012).
  2. E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B87(3), 389–393 (2007). [CrossRef]
  3. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008). [CrossRef] [PubMed]
  4. P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys.11(3), 033026 (2009). [CrossRef]
  5. Y. Ozeki, F. Dake, S. i. Kajiyama, K. Fukui, and K. Itoh, “Analysis and experimental assessment of the sensitivity of stimulated Raman scattering microscopy,” Opt. Express17(5), 3651–3658 (2009). [CrossRef] [PubMed]
  6. D. Zhang, M. N. Slipchenko, and J.-X. Cheng, “Highly sensitive vibrational imaging by femtosecond pulse stimulated Raman loss,” J Phys Chem Lett2(11), 1248–1253 (2011). [CrossRef] [PubMed]
  7. B. G. Saar, Y. Zeng, C. W. Freudiger, Y.-S. Liu, M. E. Himmel, X. S. Xie, and S.-Y. Ding, “Label-free, real-time monitoring of biomass processing with stimulated Raman scattering microscopy,” Angew. Chem. Int. Ed. Engl.49(32), 5476–5479 (2010). [CrossRef] [PubMed]
  8. M. N. Slipchenko, H. Chen, D. R. Ely, Y. Jung, M. T. Carvajal, and J.-X. Cheng, “Vibrational imaging of tablets by epi-detected stimulated Raman scattering microscopy,” Analyst (Lond.)135(10), 2613–2619 (2010). [CrossRef] [PubMed]
  9. B. G. Saar, L. R. Contreras-Rojas, X. S. Xie, and R. H. Guy, “Imaging drug delivery to skin with stimulated Raman scattering microscopy,” Mol. Pharm.8(3), 969–975 (2011). [CrossRef] [PubMed]
  10. M. C. Wang, W. Min, C. W. Freudiger, G. Ruvkun, and X. S. Xie, “RNAi screening for fat regulatory genes with SRS microscopy,” Nat. Methods8(2), 135–138 (2011). [CrossRef] [PubMed]
  11. K. Ekvall, P. van der Meulen, C. Dhollande, L. E. Berg, S. Pommeret, R. Naskrecki, and J. C. Mialocq, “Cross phase modulation artifact in liquid phase transient absorption spectroscopy,” J. Appl. Phys.87(5), 2340–2352 (2000). [CrossRef]
  12. D. Fu, T. Ye, T. E. Matthews, B. J. Chen, G. Yurtserver, and W. S. Warren, “High-resolution in vivo imaging of blood vessels without labeling,” Opt. Lett.32(18), 2641–2643 (2007). [CrossRef] [PubMed]
  13. K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys.39(9A), 5316–5322 (2000). [CrossRef]
  14. S. Berciaud, L. Cognet, G. A. Blab, and B. Lounis, “Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals,” Phys. Rev. Lett.93(25), 257402 (2004). [CrossRef] [PubMed]
  15. S. Hiki, K. Mawatari, A. Hibara, M. Tokeshi, and T. Kitamori, “UV excitation thermal lens microscope for sensitive and nonlabeled detection of nonfluorescent molecules,” Anal. Chem.78(8), 2859–2863 (2006). [CrossRef] [PubMed]
  16. G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett.5(1), 15–17 (1980). [CrossRef] [PubMed]
  17. B. F. Levine and C. G. Bethea, “Frequency-modulated shot noise limited stimulated Raman gain spectroscopy,” Appl. Phys. Lett.36(4), 245–247 (1980). [CrossRef]
  18. M. D. Levenson, W. E. Moerner, and D. E. Horne, “FM spectroscopy detection of stimulated Raman gain,” Opt. Lett.8(2), 108–110 (1983). [CrossRef] [PubMed]
  19. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum.71(5), 1929–1960 (2000). [CrossRef]
  20. I. R. Piletic, M. C. Fischer, P. Samineni, G. Yurtsever, and W. S. Warren, “Rapid pulse shaping with homodyne detection for measuring nonlinear optical signals,” Opt. Lett.33(13), 1482–1484 (2008). [CrossRef] [PubMed]
  21. A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun.284(15), 3669–3692 (2011). [CrossRef]
  22. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature418(6897), 512–514 (2002). [CrossRef] [PubMed]
  23. S.-H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, “Chemical imaging by single pulse interferometric coherent anti-Stokes Raman scattering microscopy,” J. Phys. Chem. B110(11), 5196–5204 (2006). [CrossRef] [PubMed]
  24. B.-C. Chen and S.-H. Lim, “Optimal laser pulse shaping for interferometric multiplex coherent anti-Stokes Raman scattering microscopy,” J. Phys. Chem. B112(12), 3653–3661 (2008). [CrossRef] [PubMed]
  25. O. Katz, J. M. Levitt, E. Grinvald, and Y. Silberberg, “Single-beam coherent Raman spectroscopy and microscopy via spectral notch shaping,” Opt. Express18(22), 22693–22701 (2010). [CrossRef] [PubMed]
  26. A. C. W. van Rhijn, S. Postma, J. P. Korterik, J. L. Herek, and H. L. Offerhaus, “Chemically selective imaging by spectral phase shaping for broadband CARS around 3000 cm−1,” J. Opt. Soc. Am. B26(3), 559–563 (2009). [CrossRef]
  27. M. N. Slipchenko, R. A. Oglesbee, D. Zhang, W. Wu, and J.-X. Cheng, “Heterodyne detected nonlinear optical imaging in a lock-in free manner,” J Biophotonics5(10), 801–807 (2012). [CrossRef] [PubMed]
  28. J. L. Suhalim, C.-Y. Chung, M. B. Lilledahl, R. S. Lim, M. Levi, B. J. Tromberg, and E. O. Potma, “Characterization of cholesterol crystals in atherosclerotic plaques using stimulated Raman scattering and second-harmonic generation microscopy,” Biophys. J.102(8), 1988–1995 (2012). [CrossRef] [PubMed]
  29. Y. Ozeki, W. Umemura, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “Stimulated Raman hyperspectral imaging based on spectral filtering of broadband fiber laser pulses,” Opt. Lett.37(3), 431–433 (2012). [CrossRef] [PubMed]
  30. D. Zhang, P. Wang, M. N. Slipchenko, D. Ben-Amotz, A. M. Weiner, and J.-X. Cheng, “Quantitative vibrational imaging by hyperspectral stimulated Raman scattering microscopy and multivariate curve resolution analysis,” Anal. Chem.85(1), 98–106 (2013). [CrossRef] [PubMed]
  31. F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy,” Opt. Lett.31(12), 1872–1874 (2006). [CrossRef] [PubMed]
  32. C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics5(2), 103–109 (2011). [CrossRef] [PubMed]
  33. D. E. Leaird and A. M. Weiner, “Femtosecond direct space-to-time pulse shaping,” IEEE J. Quantum Electron.37(4), 494–504 (2001). [CrossRef]
  34. T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett.85(1), 25–27 (2004). [CrossRef]
  35. I. Rocha-Mendoza, W. Langbein, P. Watson, and P. Borri, “Differential coherent anti-Stokes Raman scattering microscopy with linearly chirped femtosecond laser pulses,” Opt. Lett.34(15), 2258–2260 (2009). [CrossRef] [PubMed]
  36. A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, J. P. Pezacki, and A. Stolow, “Single laser source for multimodal coherent anti-Stokes Raman scattering microscopy,” Appl. Opt.49(25), F10–F17 (2010). [CrossRef] [PubMed]
  37. B.-C. Chen, J. Sung, and S.-H. Lim, “Chemical imaging with frequency modulation coherent anti-Stokes Raman scattering microscopy at the vibrational fingerprint region,” J. Phys. Chem. B114(50), 16871–16880 (2010). [CrossRef] [PubMed]
  38. Y. S. Yoo, D.-H. Lee, and H. Cho, “Differential two-signal picosecond-pulse coherent anti-Stokes Raman scattering imaging microscopy by using a dual-mode optical parametric oscillator,” Opt. Lett.32(22), 3254–3256 (2007). [CrossRef] [PubMed]
  39. B. G. Saar, G. R. Holtom, C. W. Freudiger, C. Ackermann, W. Hill, and X. S. Xie, “Intracavity wavelength modulation of an optical parametric oscillator for coherent Raman microscopy,” Opt. Express17(15), 12532–12539 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited