OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 13906–13916

Integrated wide-angle scanner based on translating a curved mirror of acylindrical shape

Yasser M. Sabry, Diaa Khalil, Bassam Saadany, and Tarik Bourouina  »View Author Affiliations


Optics Express, Vol. 21, Issue 12, pp. 13906-13916 (2013)
http://dx.doi.org/10.1364/OE.21.013906


View Full Text Article

Enhanced HTML    Acrobat PDF (2827 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A wide angle microscanning architecture is presented in which the angular deflection is achieved by displacing the principle axis of a curved silicon micromirror of acylindrical shape, with respect to the incident beam optical axis. The micromirror curvature is designed to overcome the possible deformation of the scanned beam spot size during scanning. In the presented architecture, the optical axis of the beam lays in-plane with respect to the substrate opening the door for a completely integrated and self-aligned miniaturized scanner. A micro-optical bench scanning device, based on translating a 200 μm focal length micromirror by an electrostatic comb-drive actuator, is implemented on a silicon chip. The microelectromechanical system has a resonance frequency of 329 Hz and a quality factor of 22. A single-mode optical fiber is used as the optical source and inserted into a micromachined groove fabricated and lithographically aligned with the microbench. Optical deflection angles up to 110 degrees are demonstrated.

© 2013 OSA

OCIS Codes
(120.5800) Instrumentation, measurement, and metrology : Scanners
(350.3950) Other areas of optics : Micro-optics
(230.4685) Optical devices : Optical microelectromechanical devices

ToC Category:
Optical Devices

History
Original Manuscript: March 8, 2013
Revised Manuscript: May 2, 2013
Manuscript Accepted: May 11, 2013
Published: June 3, 2013

Citation
Yasser M. Sabry, Diaa Khalil, Bassam Saadany, and Tarik Bourouina, "Integrated wide-angle scanner based on translating a curved mirror of acylindrical shape," Opt. Express 21, 13906-13916 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-12-13906


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. M. Chu, W. K. Choi, Y. C. Ko, J. H. Lee, H. H. Park, and D. Y. Jeon, “Flip-chip bonding of MEMS scanner for laser display using electroplated AuSn solder bump,” IEEE Trans. Adv. Packag.30(1), 27–33 (2007). [CrossRef]
  2. Z. Yaqoob and N. A. Riza, “Free-space wavelength-multiplexed optical scanner demonstration,” Appl. Opt.41(26), 5568–5573 (2002). [CrossRef] [PubMed]
  3. S. A. Boppart, T. F. Deutsch, and D. W. Rattner, “Optical imaging technology in minimally invasive surgery,” Surg. Endosc.13(7), 718–722 (1999). [CrossRef] [PubMed]
  4. T. Matsuda, F. Abe, and H. Takahashi, “Laser printer scanning system with a parabolic mirror,” Appl. Opt.17(6), 878–884 (1978). [CrossRef] [PubMed]
  5. G. Zacharakis, J. Ripoll, R. Weissleder, and V. Ntziachristos, “Fluorescent protein tomography scanner for small animal imaging,” IEEE Trans. Med. Imaging24(7), 878–885 (2005). [CrossRef] [PubMed]
  6. M. H. Kiang, O. Solgaard, R. S. Muller, and K. Y. Lau, “Surface-micromachined electrostatic-comb driven scanning micromirrors for barcode scanners,” in Proceedings of the ninth annual international workshop on Micro Electro Mechanical Systems, (IEEE, 1996), pp. 192–197.
  7. W. O. Davis, R. Sprague, and J. Miller, “MEMS-based pico projector display,” in Proceedings of IEEE/LEOS international conference on Optical MEMs and Nanophotonics, (IEEE, 2008), pp. 31–32. [CrossRef]
  8. H. Ra, W. Piyawattanametha, Y. Taguchi, D. Lee, M. J. Mandella, and O. Solgaard, “Two-dimensional MEMS scanner for dual-axes confocal microscopy,” IEEE/ASME J. Microelectromech. Syst.16(4), 969–976 (2007). [CrossRef]
  9. C. L. Arrasmith, D. L. Dickensheets, and A. Mahadevan-Jansen, “MEMS-based handheld confocal microscope for in-vivo skin imaging,” Opt. Express18(4), 3805–3819 (2010). [CrossRef] [PubMed]
  10. J. M. Zara, S. Yazdanfar, K. D. Rao, J. A. Izatt, and S. W. Smith, “Electrostatic micromachine scanning mirror for optical coherence tomography,” Opt. Lett.28(8), 628–630 (2003). [CrossRef] [PubMed]
  11. P. H. Tran, D. S. Mukai, M. Brenner, and Z. Chen, “In vivo endoscopic optical coherence tomography by use of a rotational microelectromechanical system probe,” Opt. Lett.29(11), 1236–1238 (2004). [CrossRef] [PubMed]
  12. X. Mu, G. Zhou, H. Yu, Y. Du, H. Feng, J. M. L. Tsai, and F. S. Chau, “Compact MEMS-driven pyramidal polygon reflector for circumferential scanned endoscopic imaging probe,” Opt. Express20(6), 6325–6339 (2012). [CrossRef] [PubMed]
  13. T. Iseki, M. Okumura, and T. Sugawara, “High speed and wide angle deflection optical MEMS scanner using piezoelectric actuation,” IEEE J. Trans. Elec. Electron. Eng.5(3), 361–368 (2010). [CrossRef]
  14. J. Sun, S. Guo, L. Wu, L. Liu, S.-W. Choe, B. S. Sorg, and H. Xie, “3D In Vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror,” Opt. Express18(12), 12065–12075 (2010). [CrossRef] [PubMed]
  15. A. D. Yalcinkaya, O. Ergeneman, and H. Urey, “Polymer magnetic scanners for bar code applications,” Sens. Actua. A.135, 236–243 (2007).
  16. S. D. Senturia, Microsystem Design (Kluwer Academic Publishers, 2001).
  17. O. Solgaard, Photonic Microsystems: Micro and Nanotechnology Applied to Optical Devices and Systems (Springer, 2008).
  18. Y. Wang, K. Kumar, L. Wang, and X. Zhang, “Monolithic integration of binary-phase Fresnel zone plate objectives on 2-axis scanning micromirrors for compact microscopes,” Opt. Express20(6), 6657–6668 (2012). [CrossRef] [PubMed]
  19. C. P. B. Siu, H. Zeng, and M. Chiao, “Magnetically actuated MEMS microlens scanner for in vivo medical imaging,” Opt. Express15(18), 11154–11166 (2007). [CrossRef] [PubMed]
  20. H. C. Park, C. Song, and K. H. Jeong, “Micromachined lens microstages for two-dimensional forward optical scanning,” Opt. Express18(15), 16133–16138 (2010). [CrossRef] [PubMed]
  21. J. B. Chou, K. Yu, and M. C. Wu, “Electrothermally actuated lens scanner and latching brake for free-space board-to-board optical interconnects,” IEEE/ASME J. Microelectromech. Syst.21(5), 1107–1116 (2012). [CrossRef]
  22. D. A. Khalil and H. Haddara, “Ultra-wide angle MEMS scanner architecture,” U.S. patent 8411340 B2 (2013).
  23. Y. Sabry, D. Khalil, B. Saadany, and T. Bourouina, “Wide steering angle microscanner based on curved surface,” in Proceedings of SPIE MOEMS-MEMS (SPIE, 2013), pp. 86160F. [CrossRef]
  24. Y. Sabry, D. Khalil, B. Saadany, and T. Bourouina, “Aspherical optical surfaces and optical scanners,” U.S. patent application 61676336 (2012).
  25. F. Marty, L. Rousseau, B. Saadany, B. Mercier, O. Français, Y. Mita, and T. Bourouina, “Advanced etching of silicon based on deep reactive ion etching for silicon high aspect ratio microstructures and three-dimensional micro-and nanostructures,” Microelectron. J.36(7), 673–677 (2005). [CrossRef]
  26. H. Omran, M. Medhat, B. Mortada, B. Saadany, and D. Khalil, “Fully integrated Mach-Zhender MEMS interferometer with two complementary outputs,” IEEE J. Quantum Electron.48(2), 244–251 (2012). [CrossRef]
  27. Y. Nada, M. Medhat, M. Nagi, F. Marty, B. Saadany, and T. Bourouina, “Mechanical displacement multiplier: 250 μm stable travel range MEMS actuator using frictionless simple compliant structures,” in Proceedings of IEEE Conference on Micro Electro Mechanical Systems (IEEE, 2012), pp. 1161–1164.
  28. M. Medhat, Y. Nada, B. Mortada, and B. Saadany, “Long range travel MEMS actuator,” U.S. patent application 12761621 (2010).
  29. R. Legtenberg, A. W. Groeneveld, and M. Elwenspoek, “Comb-drive actuators for large displacements,” J. Micromech. Microeng.6(3), 320–329 (1996). [CrossRef]
  30. Y. Sabry, M. Medhat, B. Saadany, T. Bourouina, and D. Khalil, “Parameter extraction of MEMS comb-drive near-resonance equivalent circuit: physically-based technique for a unique solution,” J. Micro-Nanolith. MEM11, 021205 (2012).
  31. A. E. Siegman, Lasers University Science Books (Mill Valley, 1986).
  32. P. F. Goldsmith, Quasioptical Systems (Chapman & Hall, 1998).
  33. Y. M. Sabry, B. Saadany, D. Khalil, and T. Bourouina, “Silicon micromirrors with three-dimensional curvature enabling lens-less efficient coupling of free-space light,” Light Sci. Appl.2, e94 (2013).
  34. Y. M. Sabry, T. E. Bourouina, B. A. Saadany, and D. A. M. Khalil, “Integrated monolithic optical bench containing 3-D curved optical elements and methods of its fabrication,” U.S. patent application 20130100424 (2013).
  35. ISO Standard 11146, “Lasers and laser-related equipment – Test methods for laser beam widths, divergence angles and beam propagation ratios” (2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited