OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 14388–14398

Numerical solver for supercontinuum generation in multimode optical fibers

Roman Khakimov, Igor Shavrin, Steffen Novotny, Matti Kaivola, and Hanne Ludvigsen  »View Author Affiliations

Optics Express, Vol. 21, Issue 12, pp. 14388-14398 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1247 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an approach for numerically solving the multimode generalized nonlinear Schrödinger equation (MM-GNLSE). We propose to transform the MM-GNLSE to a system of first-order ordinary differential equations (ODEs) that can then be solved using readily available ODE solvers, thus making modeling of pulse propagation in multimode fibers easier. The solver is verified for the simplest multimode case in which only the two orthogonal polarization states in a non-birefringent microstructured optical fiber are involved. Also, the nonlinear dynamics of the degree and state of spectral polarization are presented for this case.

© 2013 OSA

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(060.4005) Fiber optics and optical communications : Microstructured fibers
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Ultrafast Optics

Original Manuscript: April 10, 2013
Revised Manuscript: May 22, 2013
Manuscript Accepted: May 31, 2013
Published: June 10, 2013

Roman Khakimov, Igor Shavrin, Steffen Novotny, Matti Kaivola, and Hanne Ludvigsen, "Numerical solver for supercontinuum generation in multimode optical fibers," Opt. Express 21, 14388-14398 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. M. Dudley and J. R. Taylor, eds., Supercontinuum Generation in Optical Fibers (Cambridge University Press, New York, USA, 2010). [CrossRef]
  2. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78, 1135–1184 (2006). [CrossRef]
  3. J. C. Travers, “Blue extension of optical fibre supercontinuum generation,” J. Opt.12, 113001 (2010). [CrossRef]
  4. C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers—detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B29, 635–645 (2012). [CrossRef]
  5. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Optical properties of high-delta air-silica microstructure optical fibers,” Opt. Lett.25, 796–798 (2000). [CrossRef]
  6. R. Guobin, W. Zhi, L. Shuqin, and J. Shuisheng, “Mode classification and degeneracy in photonic crystal fibers,” Opt. Express11, 1310–1321 (2003). [CrossRef] [PubMed]
  7. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, “Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping,” J. Opt. Soc. Am. B19, 765–771 (2002). [CrossRef]
  8. A. Efimov, A. J. Taylor, F. G. Omenetto, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Nonlinear generation of very high-order UV modes in microstructured fibers,” Opt. Express11, 910–918 (2003). [CrossRef] [PubMed]
  9. S. O. Konorov, E. E. Serebryannikov, A. M. Zheltikov, P. Zhou, A. P. Tarasevitch, and D. von der Linde, “Mode-controlled colors from microstructure fibers,” Opt. Express12, 730–735 (2004). [CrossRef] [PubMed]
  10. R. Cherif, M. Zghal, L. Tartara, and V. Degiorgio, “Supercontinuum generation by higher-order mode excitation in a photonic crystal fiber,” Opt. Express16, 2147–2152 (2008). [CrossRef] [PubMed]
  11. B. Zwan, S. Legge, J. Holdsworth, and B. King, “Spatio-spectral analysis of supercontinuum generation in higher order electromagnetic modes of photonic crystal fiber,” Opt. Express21, 834–839 (2013). [CrossRef] [PubMed]
  12. F. G. Omenetto, A. J. Taylor, M. D. Moores, J. Arriaga, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Simultaneous generation of spectrally distinct third harmonics in a photonic crystal fiber,” Opt. Lett.26, 1158–1160 (2001). [CrossRef]
  13. C. Lesvigne, V. Couderc, A. Tonello, P. Leproux, A. Barthélémy, S. Lacroix, F. Druon, P. Blandin, M. Hanna, and P. Georges, “Visible supercontinuum generation controlled by intermodal four-wave mixing in microstructured fiber,” Opt. Lett.32, 2173–2175 (2007). [CrossRef] [PubMed]
  14. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,” J. Opt. Soc. Am. B19, 753–764 (2002). [CrossRef]
  15. M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett.82, 2197–2199 (2003). [CrossRef]
  16. Z. Zhu and T. G. Brown, “Polarization properties of supercontinuum spectra generated in birefringent photonic crystal fibers,” J. Opt. Soc. Am. B21, 249–257 (2004). [CrossRef]
  17. D. A. Akimov, E. E. Serebryannikov, A. M. Zheltikov, M. Schmitt, R. Maksimenka, W. Kiefer, K. V. Dukel’skii, V. S. Shevandin, and Y. N. Kondrat’ev, “Efficient anti-Stokes generation through phase-matched four-wave mixing in higher-order modes of a microstructure fiber,” Opt. Lett.28, 1948–1950 (2003). [CrossRef] [PubMed]
  18. T. Chaipiboonwong, P. Horak, J. D. Mills, and W. S. Brocklesby, “Numerical study of nonlinear interactions in a multimode waveguide,” Opt. Express15, 9040–9047 (2007). [CrossRef] [PubMed]
  19. F. Poletti and P. Horak, “Description of ultrashort pulse propagation in multimode optical fibers,” J. Opt. Soc. Am. B25, 1645–1654 (2008). [CrossRef]
  20. F. Poletti and P. Horak, “Dynamics of femtosecond supercontinuum generation in multimode fibers,” Opt. Express17, 6134–6147 (2009). [CrossRef] [PubMed]
  21. J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol.18, 327–344 (2012). [CrossRef]
  22. X.-h. Fang, M.-l. Hu, L.-l. Huang, L. Chai, N.-l. Dai, J.-y. Li, A. Y. Tashchilina, A. M. Zheltikov, and C.-y. Wang, “Multiwatt octave-spanning supercontinuum generation in multicore photonic-crystal fiber,” Opt. Lett.37, 2292–2294 (2012). [CrossRef] [PubMed]
  23. S. Mumtaz, R.-J. Essiambre, and G. P. Agrawal, “Nonlinear propagation in multimode and multicore fibers: Generalization of the Manakov equations,” J. Lightwave Technol.31, 398–406 (2013). [CrossRef]
  24. U. Møller, S. T. Sørensen, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, C. L. Thomsen, and O. Bang, “Optimum PCF tapers for blue-enhanced supercontinuum sources,” Opt. Fiber Technology18, 304–314 (2012). Fiber Supercontinuum sources and their applications. [CrossRef]
  25. J. Laegsgaard, “Mode profile dispersion in the generalised nonlinear Schrödinger equation,” Opt. Express15, 16110–16123 (2007). [CrossRef] [PubMed]
  26. O. V. Sinkin, R. Holzlohner, J. Zweck, and C. R. Menyuk, “Optimization of the split-step Fourier method in modeling optical-fiber communications systems,” J. Lightwave Technol.21, 61–68 (2003). [CrossRef]
  27. J. Hult, “A fourth-order Runge–Kutta in the interaction picture method for simulating supercontinuum generation in optical fibers,” J. Lightwave Technol.25, 3770–3775 (2007). [CrossRef]
  28. A. Heidt, “Efficient adaptive step size method for the simulation of supercontinuum generation in optical fibers,” J. Lightwave Technol.27, 3984–3991 (2009). [CrossRef]
  29. M. H. Frosz, “Validation of input-noise model for simulations of supercontinuum generation and rogue waves,” Opt. Express18, 14778–14787 (2010). [CrossRef] [PubMed]
  30. A. Apolonski, B. Povazay, A. Unterhuber, W. Drexler, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, “Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses,” J. Opt. Soc. Am. B19, 2165–2170 (2002). [CrossRef]
  31. Z. Zhu and T. G. Brown, “Experimental studies of polarization properties of supercontinua generated in a birefringent photonic crystal fiber,” Opt. Express12, 791–796 (2004). [CrossRef] [PubMed]
  32. M. Tianprateep, J. Tada, and F. Kannari, “Influence of polarization and pulse shape of femtosecond initial laser pulses on spectral broadening in microstructure fibers,” Opt. Rev.12, 179–189 (2005). [CrossRef]
  33. T. Voipio, T. Setälä, and A. T. Friberg, “Partial polarization theory of pulsed optical beams,” J. Opt. Soc. Am. A30, 71–81 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MP4 (613 KB)     
» Media 2: MP4 (688 KB)     
» Media 3: MP4 (612 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited