OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 14500–14511

Broadband on-chip optical non-reciprocity using phase modulators

Christophe Galland, Ran Ding, Nicholas C. Harris, Tom Baehr-Jones, and Michael Hochberg  »View Author Affiliations


Optics Express, Vol. 21, Issue 12, pp. 14500-14511 (2013)
http://dx.doi.org/10.1364/OE.21.014500


View Full Text Article

Enhanced HTML    Acrobat PDF (1274 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Breaking the reciprocity of light propagation in a nanoscale photonic integrated circuit (PIC) is a topic of intense research, fostered by the promises of this technology in areas ranging from experimental research in classical and quantum optics to high-rate telecommunications and data interconnects. In particular, silicon PICs fabricated in processes compatible with the existing complementary metal-oxide-semiconductor (CMOS) infrastructure have attracted remarkable attention. However, a practical solution for integrating optical isolators and circulators within the current CMOS technology remains elusive. Here, we introduce a new non-reciprocal photonic circuit operating with standard single-mode waveguides or optical fibers. Our design exploits a time-dependent index modulation obtained with conventional phase modulators such as the one widely available in silicon photonics platforms. Because it is based on fully balanced interferometers and does not involve resonant structures, our scheme is also intrinsically broadband. Using realistic parameters we calculate an extinction ratio superior to 20dB and insertion loss below 3dB.

© 2013 OSA

OCIS Codes
(130.0250) Integrated optics : Optoelectronics
(130.3120) Integrated optics : Integrated optics devices
(230.3120) Optical devices : Integrated optics devices
(230.3240) Optical devices : Isolators
(130.4110) Integrated optics : Modulators

ToC Category:
Integrated Optics

History
Original Manuscript: May 16, 2013
Manuscript Accepted: May 29, 2013
Published: June 11, 2013

Citation
Christophe Galland, Ran Ding, Nicholas C. Harris, Tom Baehr-Jones, and Michael Hochberg, "Broadband on-chip optical non-reciprocity using phase modulators," Opt. Express 21, 14500-14511 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-12-14500


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on “Nonreciprocal Light Propagation in a Silicon Photonic Circuit”,” Science335(6064), 38, author reply 38 (2012). [CrossRef] [PubMed]
  2. L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An All-Silicon Passive Optical Diode,” Science335(6067), 447–450 (2012). [CrossRef] [PubMed]
  3. J. Ballato and E. Snitzer, “Fabrication of fibers with high rare-earth concentrations for Faraday isolator applications,” Appl. Opt.34(30), 6848–6854 (1995). [CrossRef] [PubMed]
  4. A. E. Turner, R. L. Gunshor, and S. Datta, “New class of materials for optical isolators,” Appl. Opt.22(20), 3152–3154 (1983). [CrossRef] [PubMed]
  5. L. Sun, S. Jiang, J. D. Zuegel, and J. R. Marciante, “All-fiber optical isolator based on Faraday rotation in highly terbium-doped fiber,” Opt. Lett.35(5), 706–708 (2010). [CrossRef] [PubMed]
  6. R. L. Espinola, T. Izuhara, M.-C. Tsai, R. M. Osgood, and H. Dötsch, “Magneto-optical nonreciprocal phase shift in garnet/silicon-on-insulator waveguides,” Opt. Lett.29(9), 941–943 (2004). [CrossRef] [PubMed]
  7. L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics5(12), 758–762 (2011). [CrossRef]
  8. H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically Driven Nonreciprocity Induced by Interband Photonic Transition on a Silicon Chip,” Phys. Rev. Lett.109(3), 033901 (2012). [CrossRef] [PubMed]
  9. Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics3(2), 91–94 (2009). [CrossRef]
  10. K. Fang, Z. Yu, and S. Fan, “Photonic Aharonov-Bohm Effect Based on Dynamic Modulation,” Phys. Rev. Lett.108(15), 153901 (2012). [CrossRef] [PubMed]
  11. I. K. Hwang, S. H. Yun, and B. Y. Kim, “All-fiber-optic nonreciprocal modulator,” Opt. Lett.22(8), 507–509 (1997). [CrossRef] [PubMed]
  12. C. R. Doerr, N. Dupuis, and L. Zhang, “Optical isolator using two tandem phase modulators,” Opt. Lett.36(21), 4293–4295 (2011). [CrossRef] [PubMed]
  13. L. Xu and H. K. Tsang, “Nonreciprocal Optical Modulation for Colorless Integrated Optical Transceivers in Passive Optical Networks,” Opt. Commun. Netw.2(3), 131–136 (2010). [CrossRef]
  14. S. Bhandare, S. K. Ibrahim, D. Sandel, Z. Hongbin, F. Wust, and R. Noe, “Novel nonmagnetic 30-dB traveling-wave single-sideband optical isolator integrated in III/V material,” IEEE J. Sel. Top. Quantum Electron.11(2), 417–421 (2005). [CrossRef]
  15. W. M. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express15(25), 17106–17113 (2007). [CrossRef] [PubMed]
  16. V. Liu, D. A. B. Miller, and S. Fan, “Ultra-compact photonic crystal waveguide spatial mode converter and its connection to the optical diode effect,” Opt. Express20(27), 28388–28397 (2012). [CrossRef] [PubMed]
  17. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006). [CrossRef]
  18. J. Buckwalter and A. Hajimiri, “An Active Analog Delay and the Delay Reference Loop,” Proceedings of the IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 17–20 (2004). [CrossRef]
  19. R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood., “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett.15(10), 1366–1368 (2003). [CrossRef]
  20. E. Dulkeith, F. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express14(9), 3853–3863 (2006). [CrossRef] [PubMed]
  21. Z. Sheng, Z. Wang, C. Qiu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, “A Compact and Low-Loss MMI Coupler Fabricated With CMOS Technology,” IEEE Photon J.4(6), 2272–2277 (2012). [CrossRef]
  22. R. Halir, I. Molina-Fernandez, A. Ortega-Monux, J. G. Wanguemert-Perez, X. Dan-Xia, P. Cheben, and S. Janz, “A Design Procedure for High-Performance, Rib-Waveguide-Based Multimode Interference Couplers in Silicon-on-Insulator,” Lightwave Technology, Journalism26, 2928–2936 (2008).
  23. P. Dong, W. Qian, S. Liao, H. Liang, C.-C. Kung, N.-N. Feng, R. Shafiiha, J. Fong, D. Feng, A. V. Krishnamoorthy, and M. Asghari, “Low loss shallow-ridge silicon waveguides,” Opt. Express18(14), 14474–14479 (2010). [CrossRef] [PubMed]
  24. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987). [CrossRef]
  25. K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Thermal stabilization of a microring modulator using feedback control,” Opt. Express20(27), 27999–28008 (2012). [CrossRef] [PubMed]
  26. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol.13(4), 615–627 (1995). [CrossRef]
  27. S.-H. Jeong and K. Morito, “Optical 90 ° hybrid with broad operating bandwidth of 94 nm,” Opt. Lett.34(22), 3505–3507 (2009). [CrossRef] [PubMed]
  28. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express14(10), 4357–4362 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited