OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 14736–14746

A fluorescence LIDAR sensor for hyper-spectral time-resolved remote sensing and mapping

Lorenzo Palombi, Daniele Alderighi, Giovanna Cecchi, Valentina Raimondi, Guido Toci, and David Lognoli  »View Author Affiliations

Optics Express, Vol. 21, Issue 12, pp. 14736-14746 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1865 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this work we present a LIDAR sensor devised for the acquisition of time resolved laser induced fluorescence spectra. The gating time for the acquisition of the fluorescence spectra can be sequentially delayed in order to achieve fluorescence data that are resolved both in the spectral and temporal domains. The sensor can provide sub-nanometric spectral resolution and nanosecond time resolution. The sensor has also imaging capabilities by means of a computer-controlled motorized steering mirror featuring a biaxial angular scanning with 200 μradiant angular resolution. The measurement can be repeated for each point of a geometric grid in order to collect a hyper-spectral time-resolved map of an extended target.

© 2013 OSA

OCIS Codes
(280.3640) Remote sensing and sensors : Lidar
(300.2530) Spectroscopy : Fluorescence, laser-induced
(300.6500) Spectroscopy : Spectroscopy, time-resolved

ToC Category:
Remote Sensing

Original Manuscript: February 14, 2013
Revised Manuscript: May 10, 2013
Manuscript Accepted: May 10, 2013
Published: June 13, 2013

Virtual Issues
Vol. 8, Iss. 7 Virtual Journal for Biomedical Optics

Lorenzo Palombi, Daniele Alderighi, Giovanna Cecchi, Valentina Raimondi, Guido Toci, and David Lognoli, "A fluorescence LIDAR sensor for hyper-spectral time-resolved remote sensing and mapping," Opt. Express 21, 14736-14746 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Wiley, 1984).
  2. B. Valeur and M. N. Berberan-Santos, Molecular Fluorescence, Second Edi (Wiley-VCH, 2012), pp. 1–569.
  3. P. Weibring, H. Edner, and S. Svanberg, “Versatile mobile LiDAR system for environmental monitoring,” Appl. Opt.42(18), 3583–3594 (2003). [CrossRef] [PubMed]
  4. C. W. Wright, F. E. Hoge, R. N. Swift, J. K. Yungel, and C. R. Schirtzinger, “Next-Generation NASA airborne oceanographic LiDAR system,” Appl. Opt.40(3), 336–342 (2001). [CrossRef] [PubMed]
  5. L. Pantani, G. Ballerini, G. Cecchi, H. Edner, D. Lognoli, T. Johansson, V. Raimondi, S. Svanberg, P. Tiano, L. Tomaselli, and P. Weibring, “Experiments on stony monument monitoring by laser-induced fluorescence,” J. Cult. Herit.1, S345–S348 (2000). [CrossRef]
  6. V. Raimondi, G. Cecchi, D. Lognoli, L. Palombi, and G. Ballerini, “The fluorescence LIDAR technique for the cultural heritage,” in Handbook on the Use of Lasers in Conservation and Conservation Science, M. Schreiner and M. Strilic, eds. (COST Office, 2008), Vol. 7, pp. 3.6.1–3.6.18.
  7. C. E. Brown and M. F. M. Fingas, “Review of the development of laser fluorosensors for oil spill application,” Mar. Pollut. Bull.47(9-12), 477–484 (2003). [CrossRef] [PubMed]
  8. I. Mochi, M. Bazzani, G. Cecchi, C. Cucci, D. Lognoli, L. Pantani, V. Raimondi, D. Tirelli, G. Valmori, M. Abbate, and S. Fontani, “High-resolution lidar fluorescence spectra for the characterization of phytoplankton,” in International Symposium on Remote Sensing, M. Owe, C. R. Bostater, Jr., H. Fujisada, K. P. Schaefer, A. Kohnle, S. B. Serpico, M. Ehlers, F. Posa, J. D. Gonglewski, O. Lado-Bordowsky, J. B. Lurie, R. Santoleri, G. D’Urso, L. Toulios, M. L. Aten, A. Comeron, R. H. Picard, and K. Weber, eds. (2003), pp. 117–126. [CrossRef]
  9. S. R. Rogers, T. Webster, W. Livingstone, and N. J. O’Driscoll, “Airborne Laser-Induced Fluorescence (LIF) Light Detection and Ranging (LiDAR) for the quantification of dissolved organic matter concentration in natural waters,” Estuaries Coasts35(4), 959–975 (2012). [CrossRef]
  10. S. Svanberg, “Fluorescence lidar monitoring of vegetation status,” Phys. Scr. TT58, 79–85 (1995). [CrossRef]
  11. V. Raimondi, G. Cecchi, L. Pantani, and R. Chiari, “Fluorescence lidar monitoring of historic buildings,” Appl. Opt.37(6), 1089–1098 (1998). [CrossRef] [PubMed]
  12. L. Pantani, G. Cecchi, D. Lognoli, I. Mochi, V. Raimondi, D. Tirelli, M. Trambusti, G. Valmori, P. K. A. Weibring, H. Edner, T. Johansson, and S. Svanberg, “Lithotypes characterization with a fluorescence lidar imaging system using a multi-wavelength excitation source,” in Remote Sensing for Environmental Monitoring, GIS Applications, and Geology II, M. Ehlers, ed. (2003), pp. 151–159.
  13. G. Ballerini, S. Bracci, L. Pantani, and P. Tiano, “Lidar remote sensing of stone cultural heritage: detection of protective treatments,” Opt. Engineer.40(8), 1579 (2001). [CrossRef]
  14. D. Lognoli, G. Lamenti, L. Pantani, D. Tirelli, P. Tiano, and L. Tomaselli, “Detection and Characterization of Biodeteriogens on Stone Cultural Heritage by Fluorescence Lidar,” Appl. Opt.41(9), 1780–1787 (2002). [CrossRef] [PubMed]
  15. V. Raimondi, G. Cecchi, D. Lognoli, L. Palombi, R. Grönlund, A. Johansson, S. Svanberg, K. Barup, and J. Hällström, “The fluorescence lidar technique for the remote sensing of photoautotrophic biodeteriogens in the outdoor cultural heritage: A decade of in situ experiments,” Int. Biodeter. Biodegr.63(7), 823–835 (2009). [CrossRef]
  16. F. Castagnoli, G. Cecchi, L. Pantani, I. Pippi, B. Radicati, and P. Mazzinghi, “A Fluorescence LIDAR For Land And Sea Remote Sensing,” in Laser Radar Technology and Applications I, J. M. Cruickshank and R. C. Harney, eds. (1986), pp. 212–216.
  17. M. U. Piracha, D. Nguyen, D. Mandridis, T. Yilmaz, I. Ozdur, S. Ozharar, and P. J. Delfyett, “Range resolved lidar for long distance ranging with sub-millimeter resolution,” Opt. Express18(7), 7184–7189 (2010). [CrossRef] [PubMed]
  18. D. Lognoli, G. Cecchi, I. Mochi, L. Pantani, V. Raimondi, R. Chiari, T. Johansson, P. Weibring, H. Edner, and S. Svanberg, “Fluorescence lidar imaging of the cathedral and baptistery of Parma,” Appl. Phys. B76(4), 457–465 (2003). [CrossRef]
  19. K. Ohm, R. Reuter, M. Stolze, and R. Willkomm, “Shipboard oceanographic fluorescence lidar development and evaluation based on measurements in Antarctic waters,” EARSeL Advances in Remote Sensing5, 105–113 (1997).
  20. R. Barbini, F. Colao, R. Fantoni, C. Frassanito, A. Palucci, and S. Ribezzo, “Range resolved lidar fluorosensor for marine investigation,” in EARSeL-SIG-Workshop LIDAR (2000), pp. 175–184.
  21. R. M. Measures, W. R. Houston, and D. G. Stephenson, “Laser induced fluorescent decay spectra - a new form of environmental signature,” Opt. Engineer.13, 494–501 (1974).
  22. E. Hegazi, A. Hamdan, and J. Mastromarino, “Remote fingerprinting of crude oil using time-resolved fluorescence spectra,” Arab. J. Sci. Eng.30, 3–12 (2005).
  23. P. Camagni, G. Colombo, C. Koechler, A. Pedrini, N. Omenetto, and G. Rossi, “Diagnostics of oil pollution by laser-induced fluorescence,” IEEE T. Geosci. Remote26(1), 22–26 (1988). [CrossRef]
  24. L. Palombi, D. Lognoli, V. Raimondi, G. Cecchi, J. Hällström, K. Barup, C. Conti, R. Grönlund, A. Johansson, and S. Svanberg, “Hyperspectral fluorescence lidar imaging at the Colosseum, Rome: Elucidating past conservation interventions,” Opt. Express16(10), 6794–6808 (2008). [CrossRef] [PubMed]
  25. J. Hällström, K. Barup, R. Grönlund, A. Johansson, S. Svanberg, L. Palombi, D. Lognoli, V. Raimondi, G. Cecchi, and C. Conti, “Documentation of soiled and biodeteriorated facades: A case study on the Coliseum, Rome, using hyperspectral imaging fluorescence lidars,” J. Cult. Herit.10(1), 106–115 (2009). [CrossRef]
  26. F. Colao, R. Fantoni, L. Fiorani, A. Palucci, and I. Gomoiu, “Compact scanning lidar fluorosensor for investigations of biodegradation on ancient painted surfaces,” J. Optoelectron. Adv. Mater.7, 3197 (2005).
  27. U. Rascher, G. Agati, L. Alonso, G. Cecchi, S. Champagne, R. Colombo, A. Damm, F. Daumard, E. de Miguel, G. Fernandez, B. Franch, J. Franke, C. Gerbig, B. Gioli, J. A. Gómez, Y. Goulas, L. Guanter, Ó. Gutiérrez-de-la-Cámara, K. Hamdi, P. Hostert, M. Jiménez, M. Kosvancova, D. Lognoli, M. Meroni, F. Miglietta, A. Moersch, J. Moreno, I. Moya, B. Neininger, A. Okujeni, A. Ounis, L. Palombi, V. Raimondi, A. Schickling, J. A. Sobrino, M. Stellmes, G. Toci, P. Toscano, T. Udelhoven, S. van der Linden, and A. Zaldei, “CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands,” Biogeosciences6(7), 1181–1198 (2009). [CrossRef]
  28. V. Raimondi, L. Palombi, D. Lognoli, G. Cecchi, and L. Masotti, “Design and development of a new high speed performance fluorescence imaging lidar for the diagnostic of indoor and outdoor cultural heritage,” in Lasers in the Conservation of Artworks, M. Castillejo, P. Moreno, M. Oujja, R. Radvan, and J. Ruiz, eds. (CRC Press 2008, 2008), pp. 163–168.
  29. A. C. Anigrisani, D. Calcaterra, P. Cappelletti, A. Colella, M. Parente, R. Prikryl, and M. De Gennaro, “Geological features, technological characterization and weathering phenomena of the Miocene Bryozoan and Lithothamnion limestones (central-southern Italy),” Ital. J. Geosci.130, 75–92 (2011).
  30. J. R. Bezouska, J. Wang, and O. C. Mullins, “Origin of Limestone Fluorescence,” Appl. Spectrosc.52(12), 1606–1613 (1998). [CrossRef]
  31. R. C. M. Sales and D. D. Brunelli, “Luminescence spectroscopy applied to a study of the curing process of diglycidyl-ether of bisphenol-A (DGEBA),” Mater. Res.8(3), 299–304 (2005). [CrossRef]
  32. J. C. Song and C. S. P. Sung, “Fluorescence studies of diaminodiphenyl sulfone curing agent for epoxy cure characterization,” Macromolecules26(18), 4818–4824 (1993). [CrossRef]
  33. W. Koechner, “Solid-State Laser Engineering,” Springer New York1, 490 (2006).
  34. C. De Boor, A Practical Guide to Splines (Springer-Verlag, 1978), Vol. 27, p. 325.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited