OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 14841–14852

Quantum model of light transmission in array waveguide gratings

J. Capmany, J. Mora, C.R. Fernández-Pousa, and P. Muñoz  »View Author Affiliations

Optics Express, Vol. 21, Issue 12, pp. 14841-14852 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1414 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We develop, to the best of our knowledge, the first model for an array waveguide grating (AWG) device subject to quantum inputs and analyze its basic transformation functionalities for single-photon states. A commercial, cyclic AWG is experimentally characterized with weak input coherent states as a means of exploring its behaviour under realistic quantum detection. In particular it is shown the existence of a cutoff value of the average photon number below which quantum crosstalk between AWG ports is negligible with respect to dark counts. These results can be useful when considering the application of AWG devices to integrated quantum photonic systems.

© 2013 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(270.5585) Quantum optics : Quantum information and processing
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Quantum Optics

Original Manuscript: March 14, 2013
Revised Manuscript: June 7, 2013
Manuscript Accepted: June 10, 2013
Published: June 14, 2013

J. Capmany, J. Mora, C.R. Fernández-Pousa, and P. Muñoz, "Quantum model of light transmission in array waveguide gratings," Opt. Express 21, 14841-14852 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. K. Smit, J. van der Tol, and M. Hill, “Moore laws in photonics,” Lasers & Photon. Rev.6(1), 1–13 (2012). [CrossRef]
  2. J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics3(12), 687–695 (2009). [CrossRef]
  3. A. Politi, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Integrated quantum photonics,” IEEE J. Sel. Top. Quantum Electron.15(6), 1673–1684 (2009). [CrossRef]
  4. M. G. Thompson, A. Politi, J. C. F. Matthews, and J. L. O’Brien, “Integrated waveguide circuits for optical quantum computing,” IET Circuits Devices Syst.5(2), 94–102 (2011). [CrossRef]
  5. J. C. F. Matthews and M. G. Thompson, “Quantum optics: An entangled walk of photons,” Nature484(7392), 47–48 (2012). [PubMed]
  6. S. Kalliakos, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “On-chip single photon emission from an integrated semiconductor quantum dot into a photonic crystal waveguide,” Appl. Phys. Lett.99(26), 261108 (2011). [CrossRef]
  7. M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett.100(26), 261104 (2012). [CrossRef]
  8. J. R. Ong and S. Mookherjea, “Quantum light generation on a silicon chip using waveguides and resonators,” Opt. Express21(4), 5171–5181 (2013). [CrossRef] [PubMed]
  9. J. Capmany and C. R. Fernández-Pousa, “Quantum model for electro-optical phase modulation,” J. Opt. Soc. Am. B27(6), A119–A129 (2010). [CrossRef]
  10. J. Capmany and C. R. Fernández-Pousa, “Quantum model for electro-optical amplitude modulation,” Opt. Express18(24), 25127–25142 (2010). [CrossRef] [PubMed]
  11. C. C. Gerry and P. L. Knight, Introductory Quantum Optics (Cambridge Univ. Press, 2005).
  12. J. C. Garrison and R. Y. Chiao, Quantum Optics (Oxford Univ. Press, 2008).
  13. U. Leonhardt, “Quantum physics of simple optical instruments,” Rep. Prog. Phys.66(7), 1207–1249 (2003). [CrossRef]
  14. M. K. Smit and C. van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” J. Sel. Top. Quant. Electron.2(2), 236–250 (1996). [CrossRef]
  15. P. Munoz, D. Pastor, and J. Capmany, “Modeling and design of arrayed waveguide gratings,” J. Lightwave Technol.20(4), 661–674 (2002). [CrossRef]
  16. R. Loudon, The Quantum Theory of Light (Oxford Univ. Press, 2000).
  17. S. Rahimi-Keshari, M. A. Broome, R. Fickler, A. Fedrizzi, T. C. Ralph, and A. G. White, “Direct characterization of linear-optical networks,” Opt. Express21(11), 13450–13458 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited