OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 14907–14917

Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials

P. Ginzburg, F. J. Rodríguez Fortuño, G. A. Wurtz, W. Dickson, A. Murphy, F. Morgan, R. J. Pollard, I. Iorsh, A. Atrashchenko, P. A. Belov, Y. S. Kivshar, A. Nevet, G. Ankonina, M. Orenstein, and A. V. Zayats  »View Author Affiliations


Optics Express, Vol. 21, Issue 12, pp. 14907-14917 (2013)
http://dx.doi.org/10.1364/OE.21.014907


View Full Text Article

Enhanced HTML    Acrobat PDF (1363 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

One of the basic functionalities of photonic devices is the ability to manipulate the polarization state of light. Polarization components are usually implemented using the retardation effect in natural birefringent crystals and, thus, have a bulky design. Here, we have demonstrated the polarization manipulation of light by employing a thin subwavelength slab of metamaterial with an extremely anisotropic effective permittivity tensor. Polarization properties of light incident on the metamaterial in the regime of hyperbolic, epsilon-near-zero, and conventional elliptic dispersions were compared. We have shown that both reflection from and transmission through λ/20 thick slab of the metamaterial may provide nearly complete linear-to-circular polarization conversion or 90° linear polarization rotation, not achievable with natural materials. Using ellipsometric measurements, we experimentally studied the polarization conversion properties of the metamaterial slab made of the plasmonic nanorod arrays in different dispersion regimes. We have also suggested all-optical ultrafast control of reflected or transmitted light polarization by employing metal nonlinearities.

© 2013 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Metamaterials

History
Original Manuscript: January 28, 2013
Revised Manuscript: March 19, 2013
Manuscript Accepted: March 21, 2013
Published: June 17, 2013

Virtual Issues
Vol. 8, Iss. 7 Virtual Journal for Biomedical Optics
Hyperbolic Metamaterials (2013) Optics Express

Citation
P. Ginzburg, F. J. Rodríguez Fortuño, G. A. Wurtz, W. Dickson, A. Murphy, F. Morgan, R. J. Pollard, I. Iorsh, A. Atrashchenko, P. A. Belov, Y. S. Kivshar, A. Nevet, G. Ankonina, M. Orenstein, and A. V. Zayats, "Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials," Opt. Express 21, 14907-14917 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-12-14907


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 2000).
  2. A. K. Sarychev and V. M. Shalaev, Electrodynamics of Metamaterials, (World Scientific, 2007).
  3. A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90(10), 107404 (2003). [CrossRef] [PubMed]
  4. M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-Dimensional chiral plasmonic oligomers,” Nano Lett.12(5), 2542–2547 (2012). [CrossRef] [PubMed]
  5. C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E. B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett.11(10), 4400–4404 (2011). [CrossRef] [PubMed]
  6. A. Drezet, C. Genet, J. Y. Laluet, and T. W. Ebbesen, “Optical chirality without optical activity: How surface plasmons give a twist to light,” Opt. Express16(17), 12559–12570 (2008). [CrossRef] [PubMed]
  7. T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett.12(2), 1026–1031 (2012). [CrossRef] [PubMed]
  8. Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun.3, 870 (2012). [CrossRef] [PubMed]
  9. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009). [CrossRef] [PubMed]
  10. N. I. Zheludev, E. Plum, and V. A. Fedotov, “Metamaterial polarization spectral filter: isolated transmission line at any prescribed wavelength,” Appl. Phys. Lett.99(17), 171915 (2011). [CrossRef]
  11. M. Atatüre, J. Dreiser, A. Badolato, and A. Imamoglu, “Observation of Faraday rotation from a single confined spin,” Nat. Phys.3(2), 101–106 (2007). [CrossRef]
  12. I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys.7(1), 48–51 (2011). [CrossRef]
  13. C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mater.24(31), 4229–4248 (2012). [CrossRef] [PubMed]
  14. G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol.6(2), 107–111 (2011). [CrossRef] [PubMed]
  15. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009). [CrossRef] [PubMed]
  16. V. A. Podolskiy and E. E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B71(20), 201101 (2005). [CrossRef]
  17. P. Ginzburg and M. Orenstein, “Nonmetallic left-handed material based on negative-positive anisotropy in low-dimensional quantum structures,” J. Appl. Phys.103(8), 083105 (2008). [CrossRef]
  18. P. Ginzburg and M. Orenstein, “Metal-free quantum-based metamaterial for surface plasmon polariton guiding with amplification,” J. Appl. Phys.104(6), 063513 (2008). [CrossRef]
  19. C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt.14(6), 063001 (2012). [CrossRef]
  20. A. N. Poddubny, P. A. Belov, P. Ginzburg, A. V. Zayats, and Y. S. Kivshar, “Microscopic model of Purcell enhancement in hyperbolic metamaterials,” Phys. Rev. B86(3), 035148 (2012). [CrossRef]
  21. R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E.70(4), 046608 (2004). [CrossRef] [PubMed]
  22. M. G. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials,” Phys. Rev. Lett.97(15), 157403 (2006). [CrossRef] [PubMed]
  23. B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of ε-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett.100(3), 033903 (2008). [CrossRef] [PubMed]
  24. R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett.100(2), 023903 (2008). [CrossRef] [PubMed]
  25. P. Ginzburg, A. Nevet, N. Berkovitch, A. Normatov, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Plasmonic resonance effects for tandem receiving-transmitting nano-antennas,” Nano Lett.11(1), 220–224 (2011). [CrossRef] [PubMed]
  26. A. Normatov, P. Ginzburg, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Efficient coupling and field enhancement for the nano-scale: plasmonic needle,” Opt. Express18(13), 14079–14086 (2010). [CrossRef] [PubMed]
  27. R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, and R. J. Pollard, “Anisotropic optical properties of arrays of gold nanorods embedded in alumina,” Phys. Rev. B73(23), 235402 (2006). [CrossRef]
  28. R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A. V. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett.102(12), 127405 (2009). [CrossRef] [PubMed]
  29. N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics3(3), 157–162 (2009). [CrossRef]
  30. P. Ginzburg, F. J. Rodríguez-Fortuño, A. Martínez, and A. V. Zayats, “Analogue of the quantum Hanle effect and polarization conversion in non-Hermitian plasmonic metamaterials,” Nano Lett.12(12), 6309–6314 (2012). [CrossRef] [PubMed]
  31. M. Ren, E. Plum, J. Xu, and N. I. Zheludev, “Giant nonlinear optical activity in a plasmonic metamaterial,” Nat. Commun.3, 833 (2012). [CrossRef] [PubMed]
  32. L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Yu. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett.97(13), 131107 (2010). [CrossRef]
  33. R. Kullock, W. R. Hendren, A. Hille, S. Grafström, P. R. Evans, R. J. Pollard, R. Atkinson, and L. M. Eng, “Polarization conversion through collective surface plasmons in metallic nanorod arrays,” Opt. Express16(26), 21671–21681 (2008). [CrossRef] [PubMed]
  34. T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett.97(26), 261113 (2010). [CrossRef]
  35. T. Li, H. Liu, S. Wang, X. Yin, F. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett.93(2), 021110 (2008). [CrossRef]
  36. J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007). [CrossRef] [PubMed]
  37. P. Yeh, “Optics of anisotropic layered media: a new 4x4 matrix algebra,” Surf. Sci.96(1-3), 41–53 (1980). [CrossRef]
  38. W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic fano switch,” Nano Lett.12(9), 4977–4982 (2012). [CrossRef] [PubMed]
  39. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics6(11), 737–748 (2012). [CrossRef]
  40. J. Elser, R. Wangberg, V. A. Podolskiy, and E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett.89(26), 261102 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited