OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 14918–14925

Experimental demonstration of metamaterial “multiverse” in a ferrofluid

Igor I. Smolyaninov, Bradley Yost, Evan Bates, and Vera N. Smolyaninova  »View Author Affiliations

Optics Express, Vol. 21, Issue 12, pp. 14918-14925 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1138 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Extraordinary light rays propagating inside a hyperbolic metamaterial look similar to particle world lines in a 2 + 1 dimensional Minkowski spacetime. Magnetic nanoparticles in a ferrofluid are known to form nanocolumns aligned along the magnetic field, so that a hyperbolic metamaterial may be formed at large enough nanoparticle concentration nH. Here we investigate optical properties of such a metamaterial just below nH. While on average such a metamaterial is elliptical, thermal fluctuations of nanoparticle concentration lead to transient formation of hyperbolic regions (3D Minkowski spacetimes) inside this metamaterial. Thus, thermal fluctuations in a ferrofluid look similar to creation and disappearance of individual Minkowski spacetimes (universes) in the cosmological multiverse. This theoretical picture is supported by experimental measurements of polarization-dependent optical transmission of a cobalt based ferrofluid at 1500 nm.

© 2013 OSA

OCIS Codes
(160.3918) Materials : Metamaterials
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: February 4, 2013
Revised Manuscript: April 8, 2013
Manuscript Accepted: April 12, 2013
Published: June 17, 2013

Virtual Issues
Hyperbolic Metamaterials (2013) Optics Express

Igor I. Smolyaninov, Bradley Yost, Evan Bates, and Vera N. Smolyaninova, "Experimental demonstration of metamaterial “multiverse” in a ferrofluid," Opt. Express 21, 14918-14925 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. I. Smolyaninov and Y. J. Hung, “Modeling of time with metamaterials,” J. Opt. Soc. Am. B28(7), 1591–1595 (2011). [CrossRef]
  2. I. I. Smolyaninov, “Critical opalescence in hyperbolic metamaterials,” J. Opt.13(12), 125101 (2011). [CrossRef]
  3. D. A. Genov, S. Zhang, and X. Zhang, “Mimicking celestial mechanics in metamaterials,” Nat. Phys.5(9), 687–692 (2009). [CrossRef]
  4. E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett.95(4), 041106 (2009). [CrossRef]
  5. A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Electromagnetic wormholes and virtual magnetic monopoles from metamaterials,” Phys. Rev. Lett.99(18), 183901 (2007). [CrossRef] [PubMed]
  6. I. I. Smolyaninov, “Metamaterial-based model of the Alcubierre warp drive,” Phys. Rev. B84(11), 113103 (2011). [CrossRef]
  7. T. G. Mackay and A. Lakhtakia, “Towards a metamaterial simulation of a spinning cosmic string,” Phys. Lett. A374(23), 2305–2308 (2010). [CrossRef]
  8. I. I. Smolyaninov and Y. J. Hung, “Minkowski domain walls in hyperbolic metamaterials,” Phys. Lett. A377(5), 353–356 (2013). [CrossRef]
  9. I. I. Smolyaninov, “Metamaterial “Multiverse”,” J. Opt.13(2), 024004 (2010). [CrossRef]
  10. I. I. Smolyaninov and E. E. Narimanov, “Metric signature transitions in optical metamaterials,” Phys. Rev. Lett.105(6), 067402 (2011). [CrossRef] [PubMed]
  11. I. I. Smolyaninov, E. Hwang, and E. E. Narimanov, “Hyperbolic metamaterial interfaces: Hawking radiation from Rindler horizons and spacetime signature transitions,” Phys. Rev. B85(23), 235122 (2012). [CrossRef]
  12. I. I. Smolyaninov, “Vacuum in a strong magnetic field as a hyperbolic metamaterial,” Phys. Rev. Lett.107(25), 253903 (2011). [CrossRef] [PubMed]
  13. I. I. Smolyaninov, “Planck-scale physics of vacuum in a strong magnetic field,” Phys. Rev. D Part. Fields Gravit. Cosmol.85(11), 114013 (2012). [CrossRef]
  14. I. I. Smolyaninov, “Quantum electromagnetic “black holes” in a strong magnetic field,” J. Phys. G Nucl. Part. Phys.40(1), 015005 (2013). [CrossRef]
  15. Y. Gao, J. P. Huang, Y. M. Liu, L. Gao, K. W. Yu, and X. Zhang, “Optical negative refraction in ferrofluids with magnetocontrollability,” Phys. Rev. Lett.104(3), 034501 (2010). [CrossRef] [PubMed]
  16. M. Tegmark, “Parallel Universes”. In “Science and Ultimate Reality: from Quantum to Cosmos,” honoring John Wheeler's 90th birthday. J. D. Barrow, P.C.W. Davies, & C.L. Harper eds. Cambridge University Press (2003).
  17. R. Wangberg, J. Elser, E. E. Narimanov, and V. A. Podolskiy, “Nonmagnetic nanocomposites for optical and infrared negative-refractive-index media,” J. Opt. Soc. Am. B23(3), 498–505 (2006). [CrossRef]
  18. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Course of Theoretical Physics (Reed, 1984). Vol. 5.
  19. CRC Handbook of Chemistry and Physics, D. R. Lide eds. (CRC Press, 2005).
  20. T. Tumkur, G. Zhu, P. Black, Yu. A. Barnakov, C. E. Bonner, and M. A. Noginov, “Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial,” Appl. Phys. Lett.99(15), 151115 (2011). [CrossRef]
  21. I. I. Smolyaninov and A. V. Kildishev, “Light propagation through random hyperbolic media,” Opt. Lett.38(6), 971–973 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited