OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 15131–15143

Characterization of spatially varying aberrations for wide field-of-view microscopy

Guoan Zheng, Xiaoze Ou, Roarke Horstmeyer, and Changhuei Yang  »View Author Affiliations

Optics Express, Vol. 21, Issue 13, pp. 15131-15143 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2543 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a simple and robust approach for characterizing the spatially varying pupil aberrations of microscopy systems. In our demonstration with a standard microscope, we derive the location-dependent pupil transfer functions by first capturing multiple intensity images at different defocus settings. Next, a generalized pattern search algorithm is applied to recover the complex pupil functions at ~350 different spatial locations over the entire field-of-view. Parameter fitting transforms these pupil functions into accurate 2D aberration maps. We further demonstrate how these aberration maps can be applied in a phase-retrieval based microscopy setup to compensate for spatially varying aberrations and to achieve diffraction-limited performance over the entire field-of-view. We believe that this easy-to-use spatially-varying pupil characterization method may facilitate new optical imaging strategies for a variety of wide field-of-view imaging platforms.

© 2013 OSA

OCIS Codes
(100.0100) Image processing : Image processing
(170.0180) Medical optics and biotechnology : Microscopy

ToC Category:

Original Manuscript: May 15, 2013
Revised Manuscript: May 31, 2013
Manuscript Accepted: June 10, 2013
Published: June 17, 2013

Virtual Issues
Vol. 8, Iss. 8 Virtual Journal for Biomedical Optics

Guoan Zheng, Xiaoze Ou, Roarke Horstmeyer, and Changhuei Yang, "Characterization of spatially varying aberrations for wide field-of-view microscopy," Opt. Express 21, 15131-15143 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Gross, W. Singer, M. Totzeck, F. Blechinger, and B. Achtner, Handbook of Optical Systems (Wiley Online Library, 2005), Vol. 2.
  2. O. S. Cossairt, D. Miau, and S. K. Nayar, “Scaling law for computational imaging using spherical optics,” J. Opt. Soc. Am. A28(12), 2540–2553 (2011). [CrossRef] [PubMed]
  3. D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature486(7403), 386–389 (2012). [CrossRef] [PubMed]
  4. A. W. Lohmann, “Scaling laws for lens systems,” Appl. Opt.28(23), 4996–4998 (1989). [CrossRef] [PubMed]
  5. F. Berny and S. Slansky, “Wavefront determination resulting from Foucault test as applied to the human eye and visual instruments,” in Optical Instruments and Techniques (Oriel, 1969), pp. 375–386.
  6. S. Yokozeki and K. Ohnishi, “Spherical aberration measurement with shearing interferometer using Fourier imaging and moiré method,” Appl. Opt.14(3), 623–627 (1975). [CrossRef] [PubMed]
  7. M. Ma, X. Wang, and F. Wang, “Aberration measurement of projection optics in lithographic tools based on two-beam interference theory,” Appl. Opt.45(32), 8200–8208 (2006). [CrossRef] [PubMed]
  8. M. Takeda and S. Kobayashi, “Lateral aberration measurements with a digital Talbot interferometer,” Appl. Opt.23(11), 1760–1764 (1984). [CrossRef] [PubMed]
  9. J. Sung, M. Pitchumani, and E. G. Johnson, “Aberration measurement of photolithographic lenses by use of hybrid diffractive photomasks,” Appl. Opt.42(11), 1987–1995 (2003). [CrossRef] [PubMed]
  10. Q. Gong and S. S. Hsu, “Aberration measurement using axial intensity,” Opt. Eng.33(4), 1176–1186 (1994). [CrossRef]
  11. L. N. Thibos, “Principles of hartmann-shack aberrometry,” in Vision Science and its Applications, (Optical Society of America, 2000)
  12. J. L. Beverage, R. V. Shack, and M. R. Descour, “Measurement of the three - dimensional microscope point spread function using a Shack - Hartmann wavefront sensor,” J. Microsc.205(1), 61–75 (2002). [CrossRef] [PubMed]
  13. L. Seifert, J. Liesener, and H. J. Tiziani, “The adaptive Shack–Hartmann sensor,” Opt. Commun.216(4-6), 313–319 (2003). [CrossRef]
  14. R. G. Lane and M. Tallon, “Wave-front reconstruction using a Shack-Hartmann sensor,” Appl. Opt.31(32), 6902–6908 (1992). [CrossRef] [PubMed]
  15. D. Debarre, M. J. Booth, and T. Wilson, “Image based adaptive optics through optimisation of low spatial frequencies,” Opt. Express15(13), 8176–8190 (2007). [CrossRef] [PubMed]
  16. T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics4(6), 388–394 (2010). [CrossRef]
  17. M. J. Booth, “Adaptive optics in microscopy,” Philos Trans A Math Phys Eng Sci365(1861), 2829–2843 (2007). [CrossRef] [PubMed]
  18. R. G. Paxman, T. J. Schulz, and J. R. Fienup, “Joint estimation of object and aberrations by using phase diversity,” JOSA A9(7), 1072–1085 (1992). [CrossRef]
  19. B. M. Hanser, M. G. Gustafsson, D. A. Agard, and J. W. Sedat, “Phase retrieval for high-numerical-aperture optical systems,” Opt. Lett.28(10), 801–803 (2003). [CrossRef] [PubMed]
  20. B. M. Hanser, M. G. Gustafsson, D. A. Agard, and J. W. Sedat, “Phase - retrieved pupil functions in wide - field fluorescence microscopy,” J. Microsc.216(1), 32–48 (2004). [CrossRef] [PubMed]
  21. J. R. Fienup, “Phase-retrieval algorithms for a complicated optical system,” Appl. Opt.32(10), 1737–1746 (1993). [CrossRef] [PubMed]
  22. J. R. Fienup, J. C. Marron, T. J. Schulz, and J. H. Seldin, “Hubble Space Telescope characterized by using phase-retrieval algorithms,” Appl. Opt.32(10), 1747–1767 (1993). [CrossRef] [PubMed]
  23. G. R. Brady and J. R. Fienup, “Nonlinear optimization algorithm for retrieving the full complex pupil function,” Opt. Express14(2), 474–486 (2006). [CrossRef] [PubMed]
  24. R. A. Gonsalves, “Phase retrieval and diversity in adaptive optics,” Opt. Eng.21(5), 215829 (1982). [CrossRef]
  25. L. Waller, L. Tian, and G. Barbastathis, “Transport of Intensity phase-amplitude imaging with higher order intensity derivatives,” Opt. Express18(12), 12552–12561 (2010). [CrossRef] [PubMed]
  26. N. Streibl, “Phase imaging by the transport equation of intensity,” Opt. Commun.49(1), 6–10 (1984). [CrossRef]
  27. T. E. Gureyev and K. A. Nugent, “Rapid quantitative phase imaging using the transport of intensity equation,” Opt. Commun.133(1-6), 339–346 (1997). [CrossRef]
  28. S. S. Kou, L. Waller, G. Barbastathis, and C. J. Sheppard, “Transport-of-intensity approach to differential interference contrast (TI-DIC) microscopy for quantitative phase imaging,” Opt. Lett.35(3), 447–449 (2010). [CrossRef] [PubMed]
  29. L. Allen and M. Oxley, “Phase retrieval from series of images obtained by defocus variation,” Opt. Commun.199(1-4), 65–75 (2001). [CrossRef]
  30. Y. Zhang, G. Pedrini, W. Osten, and H. J. Tiziani, “Reconstruction of in-line digital holograms from two intensity measurements,” Opt. Lett.29(15), 1787–1789 (2004). [CrossRef] [PubMed]
  31. B. Das and C. S. Yelleswarapu, “Dual plane in-line digital holographic microscopy,” Opt. Lett.35(20), 3426–3428 (2010). [CrossRef] [PubMed]
  32. Y. Kawano, C. Higgins, Y. Yamamoto, J. Nyhus, A. Bernard, H.-W. Dong, H. J. Karten, and T. Schilling, “Darkfield adapter for whole slide imaging: Adapting a darkfield internal reflection illumination system to extend wsi applications,” PLoS ONE8(3), e58344 (2013). [CrossRef] [PubMed]
  33. H. Nomura, K. Tawarayama, and T. Kohno, “Aberration measurement from specific photolithographic images: a different approach,” Appl. Opt.39(7), 1136–1147 (2000). [CrossRef] [PubMed]
  34. H. Nomura and T. Sato, “Techniques for measuring aberrations in lenses used in photolithography with printed patterns,” Appl. Opt.38(13), 2800–2807 (1999). [CrossRef] [PubMed]
  35. R. Gerchberg, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.)35, 237 (1972).
  36. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt.21(15), 2758–2769 (1982). [CrossRef] [PubMed]
  37. J. Fienup and C. Wackerman, “Phase-retrieval stagnation problems and solutions,” JOSA A3(11), 1897–1907 (1986). [CrossRef]
  38. J. R. Fienup, “Reconstruction of a complex-valued object from the modulus of its Fourier transform using a support constraint,” JOSA A4(1), 118–123 (1987). [CrossRef]
  39. M. R. Bolcar and J. R. Fienup, “Sub-aperture piston phase diversity for segmented and multi-aperture systems,” Appl. Opt.48(1), A5–A12 (2009). [CrossRef] [PubMed]
  40. M. Guizar-Sicairos and J. R. Fienup, “Phase retrieval with transverse translation diversity: a nonlinear optimization approach,” Opt. Express16(10), 7264–7278 (2008). [CrossRef] [PubMed]
  41. B. H. Dean and C. W. Bowers, “Diversity selection for phase-diverse phase retrieval,” J. Opt. Soc. Am. A20(8), 1490–1504 (2003). [CrossRef] [PubMed]
  42. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company Publishers, 2005).
  43. C. Audet and J. E. Dennis., “Analysis of generalized pattern searches,” SIAM J. Optim.13(3), 889–903 (2002). [CrossRef]
  44. X. Yang, H. Li, and X. Zhou, “Nuclei segmentation using marker-controlled watershed, tracking using mean-shift, and kalman filter in time-lapse microscopy,” Circuits and Systems I: Regular Papers, IEEE Transactions on 53, 2405–2414 (2006). [CrossRef]
  45. B. K. Gunturk and X. Li, Image Restoration: Fundamentals and Advances (CRC Press, 2012), Vol. 7.
  46. T. McReynolds and D. Blythe, Advanced graphics programming using OpenGL (Morgan Kaufmann, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited