OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 15475–15489

Quantitative fluorescence and elastic scattering tissue polarimetry using an Eigenvalue calibrated spectroscopic Mueller matrix system

Jalpa Soni, Harsh Purwar, Harshit Lakhotia, Shubham Chandel, Chitram Banerjee, Uday Kumar, and Nirmalya Ghosh  »View Author Affiliations


Optics Express, Vol. 21, Issue 13, pp. 15475-15489 (2013)
http://dx.doi.org/10.1364/OE.21.015475


View Full Text Article

Enhanced HTML    Acrobat PDF (1967 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel spectroscopic Mueller matrix system has been developed and explored for both fluorescence and elastic scattering polarimetric measurements from biological tissues. The 4 × 4 Mueller matrix measurement strategy is based on sixteen spectrally resolved (λ = 400 - 800 nm) measurements performed by sequentially generating and analyzing four elliptical polarization states. Eigenvalue calibration of the system ensured high accuracy of Mueller matrix measurement over a broad wavelength range, either for forward or backscattering geometry. The system was explored for quantitative fluorescence and elastic scattering spectroscopic polarimetric studies on normal and precancerous tissue sections from human uterine cervix. The fluorescence spectroscopic Mueller matrices yielded an interesting diattenuation parameter, exhibiting differences between normal and precancerous tissues.

© 2013 OSA

OCIS Codes
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(170.7050) Medical optics and biotechnology : Turbid media
(260.5430) Physical optics : Polarization
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(170.6935) Medical optics and biotechnology : Tissue characterization
(240.2130) Optics at surfaces : Ellipsometry and polarimetry

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: February 25, 2013
Revised Manuscript: May 13, 2013
Manuscript Accepted: May 13, 2013
Published: June 21, 2013

Virtual Issues
Vol. 8, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Jalpa Soni, Harsh Purwar, Harshit Lakhotia, Shubham Chandel, Chitram Banerjee, Uday Kumar, and Nirmalya Ghosh, "Quantitative fluorescence and elastic scattering tissue polarimetry using an Eigenvalue calibrated spectroscopic Mueller matrix system," Opt. Express 21, 15475-15489 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-13-15475


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. S. Kliger, J. W. Lewis, and C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic Press, 1990).
  2. W. S. Bickel and W. M. Bailey, “Stokes vectors, Mueller matrices, and polarization of scattered light,” Am. J. Phys.53(5), 468–478 (1985). [CrossRef]
  3. R. A. Chipman, “Polarimetry,” Handbook of Optics, 2nd ed., M. Bass, Ed. (McGraw-Hill, 1994) chap. 22, pp. 22.1–22.37
  4. V. V. Tuchin, L. Wang, and D. À. Zimnyakov, Optical Polarization in Biomedical Applications, (Springer-Verlag, 2006).
  5. L. V. Wang, G. L. Coté, and S. L. Jacques, “Special section guest editorial: tissue polarimetry,” J. Biomed. Opt.7(3), 278 (2002). [CrossRef]
  6. N. Ghosh and I. A. Vitkin, “Tissue polarimetry: concepts, challenges, applications, and outlook,” J. Biomed. Opt.16(11), 110801 (2011). [CrossRef] [PubMed]
  7. R. J. McNichols and G. L. Coté, “Optical glucose sensing in biological fluids: an overview,” J. Biomed. Opt.5(1), 5–16 (2000). [CrossRef] [PubMed]
  8. R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med.7(11), 1245–1248 (2001). [CrossRef] [PubMed]
  9. A. Pierangelo, A. Benali, M.-R. Antonelli, T. Novikova, P. Validire, B. Gayet, and A. De Martino, “Ex-vivo characterization of human colon cancer by Mueller polarimetric imaging,” Opt. Express19(2), 1582–1593 (2011). [CrossRef] [PubMed]
  10. N. Ghosh, A. Banerjee, and J. Soni, “Turbid medium polarimetry in biomedical imaging and diagnosis,” Eur. Phys. J. Appl. Phys.54(3), 30001 (2011). [CrossRef]
  11. P. J. Wu and J. T. Walsh., “Stokes polarimetry imaging of rat tail tissue in a turbid medium: degree of linear polarization image maps using incident linearly polarized light,” J. Biomed. Opt.11(1), 014031 (2006). [CrossRef] [PubMed]
  12. N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Polarized light assessment of complex turbid media such as biological tissues using Mueller matrix decomposition,” Handbook of Photonics for Biomedical Science, Valery V. Tuchin, Ed. (Taylor and Francis Publishing, 2010) chap. 9, pp. 253 – 282.
  13. P. Shukla and A. Pradhan, “Mueller decomposition images for cervical tissue: Potential for discriminating normal and dysplastic states,” Opt. Express17(3), 1600–1609 (2009). [CrossRef] [PubMed]
  14. N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics2(3), 145–156 (2009). [CrossRef] [PubMed]
  15. S. Y. Lu and R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A13(5), 1106–1113 (1996). [CrossRef]
  16. R. Ossikovski, A. De Martino, and S. Guyot, “Forward and reverse product decompositions of depolarizing Mueller matrices,” Opt. Lett.32(6), 689–691 (2007). [CrossRef] [PubMed]
  17. O. Arteaga and A. Canillas, “Psuedopolar decomposition of the Jones and Mueller-Jones exponential polarization matrices,” J. Opt. Soc. Am. A26(4), 783–793 (2009). [CrossRef]
  18. N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt.13(4), 044036 (2008). [CrossRef] [PubMed]
  19. R. Ossikovski, “Differential matrix formalism for depolarizing anisotropic media,” Opt. Lett.36(12), 2330–2332 (2011). [CrossRef] [PubMed]
  20. N. Ortega-Quijano and J. L. Arce-Diego, “Mueller matrix differential decomposition,” Opt. Lett.36(10), 1942–1944 (2011). [CrossRef] [PubMed]
  21. S. Kumar, H. Purwar, R. Ossikovski, I. A. Vitkin, and N. Ghosh, “Comparative study of differential matrix and extended polar decomposition formalisms for polarimetric characterization of complex tissue-like turbid media,” J. Biomed. Opt.17(10), 105006 (2012). [CrossRef] [PubMed]
  22. J. S. Baba, J. R. Chung, A. H. DeLaughter, B. D. Cameron, and G. L. Coté, “Development and calibration of an automated Mueller matrix polarization imaging system,” J. Biomed. Opt.7(3), 341–349 (2002). [CrossRef] [PubMed]
  23. E. Compain, S. Poirier, and B. Drevillon, “General and self-consistent method for the calibration of polarization modulators, polarimeters, and Mueller-matrix ellipsometers,” Appl. Opt.38(16), 3490–3502 (1999). [CrossRef] [PubMed]
  24. M. Mujat and A. Dogariu, “Real-time measurement of the polarization transfer function,” Appl. Opt.40(1), 34–44 (2001). [CrossRef] [PubMed]
  25. M. H. Smith, “Optimization of a dual-rotating-retarder Mueller matrix polarimeter,” Appl. Opt.41(13), 2488–2493 (2002). [CrossRef] [PubMed]
  26. M. Dubreuil, S. Rivet, B. Le Jeune, and J. Cariou, “Snapshot Mueller matrix polarimeter by wavelength polarization coding,” Opt. Express15(21), 13660–13668 (2007). [CrossRef] [PubMed]
  27. C.-Y. Han and Y.-F. Chao, “Photoelastic modulated imaging ellipsometry by stroboscopic illumination technique,” Rev. Sci. Instrum.77(2), 023107 (2006). [CrossRef]
  28. B. Laude-Boulesteix, A. De Martino, B. Drévillon, and L. Schwartz, “Mueller polarimetric imaging system with liquid crystals,” Appl. Opt.43(14), 2824–2832 (2004). [CrossRef] [PubMed]
  29. A. De Martino, E. Garcia-Caurel, B. Laude, and B. Drévillon, “General methods for optimized design and calibration of Mueller polarimeters,” Thin Solid Films455−456, 112-119 (2004).
  30. F. Stabo-Eeg, “Development of instrumentation for Mueller matrix ellipsometry,” PhD dissertation, Norwegian University of Science and Technology, (2009).
  31. S. K. Mohanty, N. Ghosh, S. K. Majumder, and P. K. Gupta, “Depolarization of autofluorescence from malignant and normal human breast tissues,” Appl. Opt.40(7), 1147–1154 (2001). [CrossRef] [PubMed]
  32. J. Lackowicz, “Principles of Fluorescence Spectroscopy,” New York, (Plenum Press, 1983).
  33. O. Arteaga, S. Nichols, and B. Kahr, “Mueller matrices in fluorescence scattering,” Opt. Lett.37(14), 2835–2837 (2012). [CrossRef] [PubMed]
  34. N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,” Neoplasia2(1-2), 89–117 (2000). [CrossRef] [PubMed]
  35. D. Arifler, I. Pavlova, A. Gillenwater, and R. Richards-Kortum, “Light scattering from collagen fiber networks: micro-optical properties of normal and neoplastic stroma,” Biophys. J.92(9), 3260–3274 (2007). [CrossRef] [PubMed]
  36. Y. Wu and J. Y. Qu, “Autofluorescence spectroscopy of epithelial tissues,” J. Biomed. Opt.11(5), 054023 (2006). [CrossRef] [PubMed]
  37. D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of Multiply Scattered Waves by Spherical Diffusers: Influence of the Size Parameter,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics49(2), 1767–1770 (1994). [CrossRef] [PubMed]
  38. N. Patil, J. Soni, N. Ghosh, and P. De, “Swelling-induced optical anisotropy of thermoresponsive hydrogels based on poly(2-(2-methoxyethoxy)ethyl methacrylate): Deswelling kinetics probed by quantitative Mueller matrix polarimetry,” J. Phys. Chem. B116(47), 13913–13921 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited