OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 15538–15552

Adjustable and robust methods for polarization-dependent focusing

David Schmid, Ting-Yu Huang, Shiraz Hazrat, Radhika Dirks, Onur Hosten, Stephan Quint, Dickson Thian, and Paul G. Kwiat  »View Author Affiliations


Optics Express, Vol. 21, Issue 13, pp. 15538-15552 (2013)
http://dx.doi.org/10.1364/OE.21.015538


View Full Text Article

Enhanced HTML    Acrobat PDF (1746 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present two methods for the precise independent focusing of orthogonal linear polarizations of light at arbitrary relative locations. Our first scheme uses a displaced lens in a polarization Sagnac interferometer to provide adjustable longitudinal and lateral focal displacements via simple geometry; the second uses uniaxial crystals to achieve the same effect in a compact collinear setup. We develop the theoretical applications and limitations of our schemes, and provide experimental confirmation of our calculations.

© 2013 OSA

OCIS Codes
(220.1000) Optical design and fabrication : Aberration compensation
(260.1180) Physical optics : Crystal optics
(260.1440) Physical optics : Birefringence
(260.5430) Physical optics : Polarization

ToC Category:
Physical Optics

History
Original Manuscript: April 2, 2013
Manuscript Accepted: May 13, 2013
Published: June 21, 2013

Citation
David Schmid, Ting-Yu Huang, Shiraz Hazrat, Radhika Dirks, Onur Hosten, Stephan Quint, Dickson Thian, and Paul G. Kwiat, "Adjustable and robust methods for polarization-dependent focusing," Opt. Express 21, 15538-15552 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-13-15538


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Higurashi, R. Sawada, and T. Ito, “Optically induced angular alignment of birefringent micro-objects by linear polarization,” Appl. Phys. Lett.73(21), 3034 (1998). [CrossRef]
  2. J. B. Lassiter, M. W. Knight, N. A. Mirin, and N. J. Halas, “Reshaping the plasmonic properties of an individual nanoparticle,” Nano Lett.9(12), 4326–4332 (2009). [CrossRef] [PubMed]
  3. M. O. El-Shenawee, “Polarization dependence of plasmonic nanotoroid dimer antenna,” Antennas and Wireless Propagation Letters, IEEE9, 463–466 (2010). [CrossRef]
  4. C. M. Dutta, T. A. Ali, D. W. Brandl, T. H. Park, and P. Nordlander, “Plasmonic properties of a metallic torus,” J. Chem. Phys.129(8), 084706 (2008). [CrossRef] [PubMed]
  5. K. Bonin, B. Kourmanov, and T. Walker, “Light torque nanocontrol, nanomotors and nanorockers,” Opt. Express10(19), 984–989 (2002). [CrossRef] [PubMed]
  6. A. A. Yanik, R. Adato, S. Erramilli, and H. Altug, “Hybridized nanocavities as single-polarized plasmonic antennas,” Opt. Express17(23), 20900–20910 (2009). [CrossRef] [PubMed]
  7. R. Rangarajan, L. E. Vicent, A. B. U’Ren, and P. G. Kwiat, “A. B. U'Ren, and P. G. Kwiat, “Engineering an ideal indistinguishable photon-pair source for optical quantum information processing,” J. Mod. Opt.58(3-4), 318–327 (2011). [CrossRef]
  8. L. E. Vicent, A. B. U’Ren, R. Rangarajan, C. I. Osorio, J. P. Torres, L. Zhang, and I. A. Walmsley, “Design of bright, fiber-coupled and fully factorable photon pair sources,” New J. Phys.12(9), 093027 (2010). [CrossRef]
  9. W. S. Bakr, A. Peng, M. E. Tai, R. Ma, J. Simon, J. I. Gillen, S. Fölling, L. Pollet, and M. Greiner, “Probing the superfluid-to-Mott insulator transition at the single-atom level,” Science329(5991), 547–550 (2010). [CrossRef] [PubMed]
  10. F. Kenny, D. Lara, O. G. Rodríguez-Herrera, and C. Dainty, “Complete polarization and phase control for focus-shaping in high-NA microscopy,” Opt. Express20(13), 14015–14029 (2012). [CrossRef] [PubMed]
  11. S. Sanyal and A. Ghosh, “High tolerance to spherical aberrations and defects of focus with a birefringent lens,” Appl. Opt.41(22), 4611–4619 (2002). [CrossRef] [PubMed]
  12. S. Sanyal, Y. Kawata, S. Mandal, and A. Ghosh, “High tolerance to off-axis aberrations with a birefringent lens,” Opt. Eng.43(6), 1381–1386 (2004). [CrossRef]
  13. Y. Unno, “Point-spread function for a rotationally symmetric birefringent lens,” J. Opt. Soc. Am. A19(4), 781–791 (2002). [CrossRef] [PubMed]
  14. H. Kikuta, K. Iwata, and H. Shimomura, “First-order aberration of a double-focus lens made of a uniaxial crystal,” J. Opt. Soc. Am. A9(5), 814–819 (1992). [CrossRef]
  15. J. P. Lesso, A. J. Duncan, W. Sibbett, and M. J. Padgett, “Aberrations introduced by a lens made from a birefringent material,” Appl. Opt.39(4), 592–598 (2000). [CrossRef] [PubMed]
  16. S. Sanyal, P. Bandyopadhayay, and A. Ghosh, “Vector wave imagery using a birefringent lens,” Opt. Eng.37(2), 592–599 (1998). [CrossRef]
  17. M. Avendaño-Alejo and M. Rosete-Aguilar, “Paraxial theory for birefringent lenses,” J. Opt. Soc. Am. A22(5), 881–891 (2005). [CrossRef] [PubMed]
  18. S. Sanyal and A. Ghosh, “High focal depth with a quasi-bifocus birefringent lens,” Appl. Opt.39(14), 2321–2325 (2000). [CrossRef] [PubMed]
  19. X. Liu, X. Cai, S. Chang, and C. Grover, “Cemented doublet lens with an extended focal depth,” Opt. Express13(2), 552–557 (2005). [CrossRef] [PubMed]
  20. R. Rangarajan . “Photonic sources and detectors for quantum information protocols: a trilogy in eight parts.” Diss. University of Illinois, Urbana-Champaign, 2010. Web. July 2010.
  21. We assume that each focal location could be anywhere within a Gaussian distribution with width equal to the error measured on the original data points (and centered about the measured value). We then calculate one million sets of simulated data, each set containing one value from the Gaussian distribution associated with each measured point. We then calculate the slope of each set, and the Gaussian width of the 1 million sets of slopes gives an accurate error value on our measured value of the slope.
  22. To see this, one can find the necessary lens displacement d for a given application by comparing the final beam waist wout,2 = √[λαf22/π(α2 + d2)] for two lenses with the final beam waist wout,1 = λf1/πw for one lens. For example, assume we want to achieve a focal size β times smaller than that possible with a single lens, so that β = wout,1/wout,2.Solving this equality for d gives d = √[(βf2)2 - α2]. If, then, we wish to focus five times more tightly (i.e., the desired beam waist is 5 times smaller than it was with only one lens), then d will be greater than 50, well within the range of validity of our equations.
  23. K. Yonezawa, Y. Kozawa, and S. Sato, “Focusing of radially and azimuthally polarized beams through a uniaxial crystal,” J. Opt. Soc. Am. A25(2), 469–472 (2008). [CrossRef] [PubMed]
  24. R. Goldstein, Electro-optic Devices in Review (Lasers and Applications, 1986).
  25. B. E. A. Saleh and M. C. Teich, Beam Optics, in Fundamentals of Photonics (John Wiley & Sons, 1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited