OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 15664–15675

Measuring nanoparticle size using optical surface profilers

Douglas J. Little and Deb M. Kane  »View Author Affiliations

Optics Express, Vol. 21, Issue 13, pp. 15664-15675 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (983 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical surface profilers are state-of-the-art instruments for measuring surface height profiles. They are not conventionally applied to nanoparticle measurements due to the presence of diffraction artifacts. Here we use a theoretical model based on wave-optics to account for diffraction-based artifacts in optical surface profilers. This then enables accurate measurement of nanoparticles size of a known geometry. The model is developed for both phase shifting interferometry and vertical scanning interferometry modes of operation. It is demonstrated that nanosphere radii as small as 12 nm, and nano-cylinder radii as small as 10-15 nm can be measured from a standard profile measurement using phase shifted interferometry interpreted using the wave-optics approach.

© 2013 OSA

OCIS Codes
(110.4850) Imaging systems : Optical transfer functions
(120.3940) Instrumentation, measurement, and metrology : Metrology
(180.3170) Microscopy : Interference microscopy
(110.3175) Imaging systems : Interferometric imaging

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: June 5, 2013
Manuscript Accepted: June 10, 2013
Published: June 21, 2013

Douglas J. Little and Deb M. Kane, "Measuring nanoparticle size using optical surface profilers," Opt. Express 21, 15664-15675 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. W.  Hell, J.  Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994). [CrossRef] [PubMed]
  2. E.  Betzig, G. H.  Patterson, R.  Sougrat, O. W.  Lindwasser, S.  Olenych, J. S.  Bonifacino, M. W.  Davidson, J.  Lippincott-Schwartz, H. F.  Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006). [CrossRef] [PubMed]
  3. Y.  Cotte, F.  Toy, P.  Jourdain, N.  Pavillon, D.  Boss, P.  Magistretti, P.  Marquet, C.  Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013). [CrossRef]
  4. C.  Urban, P.  Schurtenberger, “Characterization of turbid colloidal suspensions using light scattering techniques combined with cross-correlation methods,” J. Colloid Interface Sci. 207(1), 150–158 (1998). [CrossRef] [PubMed]
  5. C. J. R.  Sheppard, T.  Wilson, “The theory of the direct-view confocal microscope,” J. Microsc. 124(Pt 2), 107–117 (1981). [CrossRef] [PubMed]
  6. M. G. L.  Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000). [CrossRef] [PubMed]
  7. D. A.  Agard, J. W.  Sedat, “Three-dimensional architecture of a polytene nucleus,” Nature 302(5910), 676–681 (1983). [CrossRef] [PubMed]
  8. S. W.  Hell, E. H. K.  Stelzer, S.  Lindek, C.  Cremer, “Confocal microscopy with an increased detection aperture: type-B 4Pi confocal microscopy,” Opt. Lett. 19(3), 222–224 (1994). [CrossRef] [PubMed]
  9. T. E.  Gureyev, A.  Roberts, K. A.  Nugent, “Phase retrieval with the transport-of-intensity equation: matrix solution with use of Zernike polynomials,” J. Opt. Soc. Am. A 12(9), 1932–1941 (1995). [CrossRef]
  10. B.  Bhushan, J. C.  Wyant, C. L.  Koliopoulos, “Measurement of surface topography of magnetic tapes by Mirau interferometry,” Appl. Opt. 24(10), 1489–1497 (1985). [CrossRef] [PubMed]
  11. S. W.  Hell, “Far-Field Optical Nanoscopy,” Science 316(5828), 1153–1158 (2007). [CrossRef] [PubMed]
  12. F.  Gao, R. K.  Leach, J.  Petzing, J. M.  Coupland, “Surface measurement errors using commercial scanning white light interferometers,” Meas. Sci. Technol. 19(1), 015303 (2008). [CrossRef]
  13. D. J. Little, R. L. Kuruwita, A. Joyce, Q. Gao, T. Burgess, C. Jagadish, and D. M. Kane, “Nanoparticle measurement in the optical far-field.” presented at the European Conference for Lasers and Electro-Optics (ECLEO), Munich, Germany, 12–16 May 2013, paper PD-B.9.
  14. B. S.  Lee, T. C.  Strand, “Profilometry with a coherence scanning microscope,” Appl. Opt. 29(26), 3784–3788 (1990). [CrossRef] [PubMed]
  15. A.  Harasaki, J.  Schmit, J. C.  Wyant, “Improved vertical-scanning interferometry,” Appl. Opt. 39(13), 2107–2115 (2000). [CrossRef] [PubMed]
  16. G. S.  Kino, S. S. C.  Chim, “Mirau correlation microscope,” Appl. Opt. 29(26), 3775–3783 (1990). [CrossRef] [PubMed]
  17. P.  Groot, “Derivation of algorithms for phase-shifting interferometry using the concept of a data-sampling window,” Appl. Opt. 34(22), 4723–4730 (1995). [CrossRef] [PubMed]
  18. I.  Gurov, E.  Ermolaeva, A.  Zakharov, “Analysis of low-coherence interference fringes by the Kalman filtering method,” J. Opt. Soc. Am. A 21(2), 242–251 (2004). [CrossRef] [PubMed]
  19. E. Hecht, Optics (Addison Wesley Longman, 1998), Chap. 11.
  20. E. L.  Church, P. Z.  Takacs, “Effects of the optical transfer function in surface profile measurements,” Proc. SPIE 1164, 46–59 (1989). [CrossRef]
  21. A.  Krywonos, J. E.  Harvey, N.  Choi, “Linear systems formulation of scattering theory for rough surfaces with arbitrary incident and scattering angles,” J. Opt. Soc. Am. A 28(6), 1121–1138 (2011). [CrossRef] [PubMed]
  22. J. M.  Coupland, J.  Lobera, “Holography, tomography and 3D microscopy as linear filtering operations,” Meas. Sci. Technol. 19(7), 074012 (2008). [CrossRef]
  23. A.  Harasaki, J. C.  Wyant, “Fringe modulation skewing effect in white-light vertical scanning interferometry,” Appl. Opt. 39(13), 2101–2106 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited