OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 15706–15718

Sub-100-nanosecond thermal reconfiguration of silicon photonic devices

Amir H. Atabaki, Ali A. Eftekhar, Siva Yegnanarayanan, and Ali Adibi  »View Author Affiliations


Optics Express, Vol. 21, Issue 13, pp. 15706-15718 (2013)
http://dx.doi.org/10.1364/OE.21.015706


View Full Text Article

Enhanced HTML    Acrobat PDF (1490 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

One of the limitations of thermal reconfiguration in silicon photonics is its slow response time. At the same time, there is a tradeoff between the reconfiguration speed and power consumption in conventional reconfiguration schemes that poses a challenge in improving the performance of microheaters. In this work, we theoretically and experimentally demonstrate that the high thermal conductivity of silicon can be exploited to tackle this tradeoff through direct pulsed excitation of the device silicon layer. We demonstrate 85 ns reconfiguration of 4 µm diameter microdisks, which is one order of magnitude improvement over the conventional microheaters. At the same time, 2.06 nm/mW resonance wavelength shift is achieved in these devices, which is in a par with the best microheater architectures optimized for low-power operation. We also present a system-level model that precisely describes the response of the demonstrated microheaters. A differentially addressed optical switch is also demonstrated that shows the possibility of switching in opposite directions (i.e., OFF-to-ON and ON-to-OFF) using the proposed reconfiguration scheme.

© 2013 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(160.6840) Materials : Thermo-optical materials

ToC Category:
Integrated Optics

History
Original Manuscript: April 22, 2013
Revised Manuscript: June 14, 2013
Manuscript Accepted: June 15, 2013
Published: June 24, 2013

Citation
Amir H. Atabaki, Ali A. Eftekhar, Siva Yegnanarayanan, and Ali Adibi, "Sub-100-nanosecond thermal reconfiguration of silicon photonic devices," Opt. Express 21, 15706-15718 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-13-15706


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE97(7), 1166–1185 (2009). [CrossRef]
  2. A. J. Seeds, “Microwave photonics,” IEEE Trans. Microw. Theory Tech.50(3), 877–887 (2002). [CrossRef]
  3. J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” IEEE J. Lightwav. Technol.31(4), 571–586 (2013). [CrossRef]
  4. L. Pavesi and D. Lockwood, Silicon photonics (Springer Verlag, 2004).
  5. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006). [CrossRef]
  6. P. Alipour, A. A. Eftekhar, A. H. Atabaki, Q. Li, S. Yegnanarayanan, C. K. Madsen, and A. Adibi, “Fully reconfigurable compact RF photonic filters using high-Q silicon microdisk resonators,” Opt. Express19(17), 15899–15907 (2011). [CrossRef] [PubMed]
  7. Q. Li, A. A. Eftekhar, P. Alipour, A. H. Atabaki, S. Yegnanarayanan, and A. Adibi, “Low-loss microdisk-based delay lines for narrowband optical filters,” IEEE Photon. Technol. Lett.24(15), 1276–1278 (2012). [CrossRef]
  8. W. M. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express15(25), 17106–17113 (2007). [CrossRef] [PubMed]
  9. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005). [CrossRef] [PubMed]
  10. M. Yang, W. M. Green, S. Assefa, J. Van Campenhout, B. G. Lee, C. V. Jahnes, F. E. Doany, C. L. Schow, J. A. Kash, and Y. A. Vlasov, “Non-blocking 4x4 Electro-optic silicon switch for on-chip photonic networks,” Opt. Express19(1), 47–54 (2011). [CrossRef] [PubMed]
  11. P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express18(19), 20298–20304 (2010). [CrossRef] [PubMed]
  12. M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CPDB10. [CrossRef]
  13. A. H. Atabaki, E. Shah Hosseini, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Optimization of metallic microheaters for high-speed reconfigurable silicon photonics,” Opt. Express18(17), 18312–18323 (2010). [CrossRef] [PubMed]
  14. P. Dong, W. Qian, H. Liang, R. Shafiiha, N. N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express18(10), 9852–9858 (2010). [CrossRef] [PubMed]
  15. F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Photonics in Switching, 67–68 (2007). [CrossRef]
  16. J. Van Campenhout, W. M. Green, S. Assefa, and Y. A. Vlasov, “Integrated NiSi waveguide heaters for CMOS-compatible silicon thermo-optic devices,” Opt. Lett.35(7), 1013–1015 (2010). [CrossRef] [PubMed]
  17. Q. Fang, J. F. Song, X. Luo, L. Jia, M. B. Yu, G. Q. Lo, and Y. Liu, “High efficiency ring-resonator filter with NiSi heater,” IEEE Photon. Technol. Lett.24(5), 350–352 (2012). [CrossRef]
  18. J. Song, Q. Fang, T. Liow, H. Cai, M. Yu, G. Lo, and D. Kwong, “High efficiency optical switches with heater-on-slab (HoS) structures,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OThM2. [CrossRef]
  19. A. H. Atabaki, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Sub-100ns and low-loss reconfigurable silicon photonics,” 23rd Annual Meeting of the IEEE Photonics Society, 230–231 (2010). [CrossRef]
  20. M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photon. Technol. Lett.16(11), 2514–2516 (2004). [CrossRef]
  21. R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood, “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett.15(10), 1366–1368 (2003). [CrossRef]
  22. S. Ibrahim, N. K. Fontaine, S. S. Djordjevic, B. Guan, T. Su, S. Cheung, R. P. Scott, A. T. Pomerene, L. L. Seaford, C. M. Hill, S. Danziger, Z. Ding, K. Okamoto, and S. J. Yoo, “Demonstration of a fast-reconfigurable silicon CMOS optical lattice filter,” Opt. Express19(14), 13245–13256 (2011). [CrossRef] [PubMed]
  23. C. Hui-Wen Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microw. Theory Tech.58(11), 3213–3219 (2010). [CrossRef]
  24. M. Soltani, Q. Li, S. Yegnanarayanan, and A. Adibi, “Toward ultimate miniaturization of high Q silicon traveling-wave microresonators,” Opt. Express18(19), 19541–19557 (2010). [CrossRef] [PubMed]
  25. Q. Li, M. Soltani, S. Yegnanarayanan, and A. Adibi, “Design and demonstration of compact, wide bandwidth coupled-resonator filters on a siliconon- insulator platform,” Opt. Express17(4), 2247–2254 (2009). [CrossRef] [PubMed]
  26. F. Kreith and M. Bohn, Principles of Heat Transfer (Harper & Row, 1986).
  27. The limitation of the thermal response time depends on the structure of the device. For structures that directly heat the Si layer the response time is 0.6 µs [20] and 2.9 µs (this work) with and without upper SiO2 cladding, respectively. For structures that the microheater is placed on top of the cladding, the response time is limited to 4 µs [13]. All of these numbers are based on BOX layer thickness of 1 µm, which is roughly the smallest thickness possible for improving the response time of the mciroheater without suffering from radiation loss to the substrate.
  28. M. Rasras, D. Gill, S. Patel, K. Tu, Y. Chen, A. White, A. Pomerene, D. Carothers, M. Grove, D. Sparacin, J. Michel, M. Beals, and L. Kimerling, “Demonstration of a fourth-order pole-zero optical filter integrated using CMOS Processes,” J. Lightwave Technol.25(1), 87–92 (2007). [CrossRef]
  29. H. Chien, D. Yao, and C. Hsu, “Measurement and evaluation of the interfacial thermal resistance between a metal and a dielectric,” Appl. Phys. Lett.93(23), 231910 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited