Optics InfoBase > Optics Express > Volume 21 > Issue 13 > Page 15959
Large-alphabet time-frequency entangled quantum key distribution by means of time-to-frequency conversionJ. Nunn, L. J. Wright, C. Söller, L. Zhang, I. A. Walmsley, and B. J. Smith »View Author Affiliations
J. Nunn,^{1}
L. J. Wright,^{1}
C. Söller,^{1,}^{2}
L. Zhang,^{3}
I. A. Walmsley,^{1}
and B. J. Smith^{1,}^{*}
^{1}Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK ^{2}Current address: Heraeus Noblelight GmbH, Heraeusstraße 12-14, 63450 Hanau, Germany ^{3}Bldg. 99, Max Planck Research Department for Structural Dynamics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany ^{*}Corresponding author: b.smith1@physics.ox.ac.uk |
Optics Express, Vol. 21, Issue 13, pp. 15959-15973 (2013)
http://dx.doi.org/10.1364/OE.21.015959
View Full Text Article
Enhanced HTML Acrobat PDF (1273 KB)
Abstract
We introduce a novel time-frequency quantum key distribution (TFQKD) scheme based on photon pairs entangled in these two conjugate degrees of freedom. The scheme uses spectral detection and phase modulation to enable measurements in the temporal basis by means of time-to-frequency conversion. This allows large-alphabet encoding to be implemented with realistic components. A general security analysis for TFQKD with binned measurements reveals a close connection with finite-dimensional QKD protocols and enables analysis of the effects of dark counts on the secure key size.
© 2013 OSA
OCIS Codes
(060.4080) Fiber optics and optical communications : Modulation
(060.4230) Fiber optics and optical communications : Multiplexing
(060.4510) Fiber optics and optical communications : Optical communications
(060.5060) Fiber optics and optical communications : Phase modulation
(270.5570) Quantum optics : Quantum detectors
(060.5565) Fiber optics and optical communications : Quantum communications
(270.5568) Quantum optics : Quantum cryptography
(270.5585) Quantum optics : Quantum information and processing
ToC Category:
Quantum Optics
History
Original Manuscript: May 6, 2013
Revised Manuscript: June 19, 2013
Manuscript Accepted: June 20, 2013
Published: June 26, 2013
Citation
J. Nunn, L. J. Wright, C. Söller, L. Zhang, I. A. Walmsley, and B. J. Smith, "Large-alphabet time-frequency entangled quantum key distribution by means of time-to-frequency conversion," Opt. Express 21, 15959-15973 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-13-15959
Sort: Author | Year | Journal | Reset
References
- J. Rarity, P. Tapster, J. Walker, and S. Seward, “Experimental demonstration of single photon rangefinding using parametric downconversion,” Appl. Opt.29, 2939–2943 (1990). [CrossRef] [PubMed]
- A. Datta, L. Zhang, N. Thomas-Peter, U. Dorner, B. J. Smith, and I. A. Walmsley, “Quantum metrology with imperfect states and detectors,” Phys. Rev. A83, 063836 (2011). [CrossRef]
- P. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” Appl. Math. J. Comp26, 1484–1509 (1997).
- B. P. Lanyon, T. J. Weinhold, N. K. Langford, M. Barbieri, D. F. V. James, A. Gilchrist, and A. G. White, “Experimental demonstration of a compiled version of Shor’s algorithm with quantum entanglement,” Phys. Rev. Lett.99, 250505 (2007). [CrossRef]
- E. Martin-Lopez, A. Laing, T. Lawson, R. Alvarez, X.-Q. Zhou, and J. L. O’Brien, “Experimental realization of Shor’s quantum factoring algorithm using qubit recycling,” Nat. Photonics6, 773–776 (2012). [CrossRef]
- A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, ““Plug and play” systems for quantum cryptography,” Appl. Phys. Lett.70, 793–795 (1997). [CrossRef]
- J. H. Shapiro, “Defeating passive eavesdropping with quantum illumination,” Phys. Rev. A80, 022320 (2009). [CrossRef]
- A. Hayat, X. Xing, A. Feizpour, and A. M. Steinberg, “Multidimensional quantum information based on single-photon temporal wavepackets,” arXiv:1212.1483 (2012).
- P. Rohde, J. Fitzsimons, and A. Gilchrist, “The information capacity of a single photon,” arXiv:1211.1427 (2012).
- J. Mower, Z. Zhang, P. Desjardins, C. Lee, J. H. Shapiro, and D. Englund, “High-dimensional quantum key distribution using dispersive optics,” arXiv:1210.4501 (2012).
- Z. Chang-Hua, P. Chang-Xing, Q. Dong-Xiao, G. Jing-Liang, C. Nan, and Y. Yun-Hui, “A new quantum key distribution scheme based on frequency and time coding,” Chin. Phys. Lett.27, 090301 (2010). [CrossRef]
- B. Qi, “Single-photon continuous-variable quantum key distribution based on the energy-time uncertainty relation,” Opt. Lett.31, 2795–2797 (2006). [CrossRef] [PubMed]
- S. Galbraith, Mathematics of public key cryptography (Cambridge University, 2012). [CrossRef]
- N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74, 145–195 (2002). [CrossRef]
- C. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” Proceedings of IEEE International Conference on Computers, Systems and Signal Processing175–179 (1984).
- “MagiQ ( http://magiqtech.com ), ID Quantique ( www.idquantique.com ), QuintessenceLabs (qlabsusa.com), Toshiba ( http://www.toshiba-europe.com/research/crl/qig/quantumkeyserver.html ),”.
- D. Simon, N. Lawrence, J. Trevino, L. Negro, and A. Sergienko, “Quantum key distribution with Fibonacci orbital angular momentum states,” arXiv:1206.3548 (2012).
- D. Gauthier, H. Guilbert, Y. Zhu, M. Shi, K. McCusker, B. Christensen, P. Kwiat, T. Brougham, S. Barnett, and V. Chandar, “Quantum key distribution using hyperentanglement,” in “Quantum Information and Measurement,” (Optical Society of America, 2012).
- S. Braunstein and S. Pirandola, “Side-channel-free quantum key distribution,” Phys. Rev. Lett.108, 130502 (2012). [CrossRef] [PubMed]
- H. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett.108, 130503 (2012). [CrossRef] [PubMed]
- N. Gisin, G. Ribordy, H. Zbinden, D. Stucki, N. Brunner, and V. Scarani, “Towards practical and fast quantum cryptography,” arXiv:0411022 (2004).
- A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett.67, 661–663 (1991). [CrossRef] [PubMed]
- L. Duan, M. Lukin, J. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature414, 413–418 (2001). [CrossRef] [PubMed]
- E. Saglamyurek, N. Sinclair, J. Jin, J. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Quantum memory for quantum repeaters,” in “International Quantum Electronics Conference,” (Optical Society of America, 2011).
- B. Qi, “Quantum key distribution based on frequency-time coding: security and feasibility,” arXiv:1101.5995 (2011).
- J. Mower, F. Wong, J. H. Shapiro, and D. Englund, “Dense wavelength division multiplexed quantum key distribution using entangled photons,” arXiv:1110.4867v1 (2011).
- I. Ali-Khan and J. C. Howell, “Experimental demonstration of high two-photon time-energy entanglement,” Phys. Rev. A73, 031801 (2006). [CrossRef]
- H. Takesue, K. Harada, K. Tamaki, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Long-distance entanglement-based quantum key distribution experiment using practical detectors,” Opt. Express18, 16777–16787 (2010). [CrossRef] [PubMed]
- I. Ali-Khan, C. J. Broadbent, and J. C. Howell, “Large-alphabet quantum key distribution using energy-time entangled bipartite states,” Phys. Rev. Lett.98, 060503 (2007). [CrossRef] [PubMed]
- L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar, J.-M. Merolla, and K. P. Huy, “Frequency-bin entangled photons,” Phys. Rev. A82, 013804 (2010). [CrossRef]
- P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett.100, 133601 (2008). [CrossRef] [PubMed]
- O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett.102, 123603 (2009). [CrossRef] [PubMed]
- G. Brida, V. Caricato, M. Fedorov, M. Genovese, M. Gramegna, and S. Kulik, “Characterization of spectral entanglement of spontaneous parametric-down conversion biphotons in femtosecond pulsed regime,” Europhys. Lett.87, 64003 (2009). [CrossRef]
- W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A56, 1627–1634 (1997). [CrossRef]
- L. Zhang, A. B. U’ren, R. Erdmann, K. O’Donnell, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Generation of highly entangled photon pairs for continuous variable Bell inequality violation,” J. Mod. Opt.54, 707–719 (2007). [CrossRef]
- M. Avenhaus, A. Eckstein, P. J. Mosley, and C. Silberhorn, “Fiber-assisted single-photon spectrograph,” Opt. Lett.34, 2873–2875 (2009). [CrossRef] [PubMed]
- I. A. Walmsley and C. Dorrer, “Characterization of ultrashort electromagnetic pulses,” Adv. Opt. Photon.1, 308–437 (2009). [CrossRef]
- H. Takesue, S. Nam, Q. Zhang, R. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-db channel loss using superconducting single-photon detectors,” Nat. Photonics1, 343–348 (2007). [CrossRef]
- S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, and T. Louis, “20-ps Timing resolution with single-photon avalanche diodes,” Rev. Sci. Instrum.60, 1104 (1989). [CrossRef]
- A. Lita, A. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express16, 3032–3040 (2008). [CrossRef] [PubMed]
- R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics3, 696–705 (2009). [CrossRef]
- F. Marsili, V. Verma, J. Stern, S. Harrington, A. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. Shaw, R. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics7, 210–214 (2013). [CrossRef]
- G. Vernam, “Cipher printing telegraph systems for secret wire and radio telegraphic communications,” Transactions of the American Institute of Electrical Engineers45, 295–301 (1926). [CrossRef]
- Since we do not treat finite size effects, the fraction is arbitrary, although realistically it should be large enough to suppress Poissonian errors on the estimation of error rates.
- W. P. Grice, R. Erdmann, I. A. Walmsley, and D. Branning, “Spectral distinguishability in ultrafast parametric down-conversion,” Phys. Rev. A57, R2289–R2292 (1998). [CrossRef]
- C. K. Law, I. A. Walmsley, and J. H. Eberly, “Continuous frequency entanglement: effective finite hilbert space and entropy control,” Phys. Rev. Lett.84, 5304–5307 (2000). [CrossRef] [PubMed]
- J. Eberly, K. Chan, and C. Law, “Schmidt-mode analysis of entanglement for quantum information studies,” in “Quantum Communication and Information Technologies,” (Springer, 2003), pp. 1–12. [CrossRef]
- The assumption of a top-hat profile can be relaxed without changing our analysis, but the calculation in Appendix A would require numerics.
- L. Zhang, L. Neves, J. S. Lundeen, and I. A. Walmsley, “A characterization of the single-photon sensitivity of an electron multiplying charge-coupled device,” J. Phys. B42, 114011 (2009). [CrossRef]
- B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron.30, 1951–1963 (1994). [CrossRef]
- C. V. Bennett and B. H. Kolner, “Upconversion time microscope demonstrating 103 x magnification of femtosecond waveforms,” Opt. Lett.24, 783–785 (1999). [CrossRef]
- J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photonics7363–366 (2013). [CrossRef]
- Other phase modulation schemes such as four-wave mixing in waveguides [54] or sum-frequency generation in nonlinear crystals [51] could of course be used. Here we consider electro-optic phase modulation, which can be implemented with off-the-shelf telecoms components efficiently and with low loss.
- R. Salem, M. Foster, A. Turner, D. Geraghty, M. Lipson, and A. Gaeta, “Optical time lens based on four-wave mixing on a silicon chip,” Opt. Lett.33, 1047–1049 (2008). [CrossRef] [PubMed]
- J. Azaña, “Time-to-frequency conversion using a single time lens,” Opt. Commun.217, 205–209 (2003). [CrossRef]
- W. Wasilewski, A. I. Lvovsky, K. Banaszek, and C. Radzewicz, “Pulsed squeezed light: simultaneous squeezing of multiple modes,” Phys. Rev. A73, 063819 (2006). [CrossRef]
- W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A64, 063815 (2001). [CrossRef]
- M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett.64, 270–272 (1994). [CrossRef]
- L. Zhang, C. Silberhorn, and I. A. Walmsley, “Secure quantum key distribution using continuous variables of single photons,” Phys. Rev. Lett.100, 110504 (2008). [CrossRef] [PubMed]
- J. Schneeloch, C. J. Broadbent, S. P. Walborn, E. G. Cavalcanti, and J. C. Howell, “EPR steering inequalities from entropic uncertainty relations,” arXiv:1303.7432 (2013).
- Ł. Rudnicki, S. Walborn, and F. Toscano, “Optimal uncertainty relations for extremely coarse-grained measurements,” Phys. Rev. A85, 042115 (2012). [CrossRef]
- J. Schneeloch, P. B. Dixon, G. A. Howland, C. J. Broadbent, and J. C. Howell, “Violation of continuous-variable Einstein-Podolsky-Rosen steering with discrete measurements,” Phys. Rev. Lett.110, 130407 (2013). [CrossRef] [PubMed]
- D. Tasca, L. Rudnicki, R. Gomes, F. Toscano, and S. Walborn, “Reliable entanglement detection under coarse-grained measurements,” arXiv:1210.5945 (2012).
- M. R. Ray and S. van Enk, “Missing data outside the detector range: application to continuous variable entanglement verification and quantum cryptography,” arXiv:1302.5087 (2013).
- J. M. Renes and J.-C. Boileau, “Conjectured strong complementary information tradeoff,” Phys. Rev. Lett.103, 020402 (2009). [CrossRef] [PubMed]
- In general the key distillation will have non-unit efficiency βsuch that I= βIBA− IBE. However high efficiencies can be achieved, with β> 90%. Although the formulas are simplified by assuming β= 1, our security analysis can be trivially extended to cover the general case.
- M. Krishna and K. Parthasarathy, “An entropic uncertainty principle for quantum measurements,” Sankhyâ A842–851 (2002).
- F. Grosshans and N. J. Cerf, “Continuous-variable quantum cryptography is secure against non-gaussian attacks,” Phys. Rev. Lett.92, 047905 (2004). [CrossRef] [PubMed]
- N. Beaudry, T. Moroder, and N. Lütkenhaus, “Squashing models for optical measurements in quantum communication,” Phys. Rev. Lett.101, 93601 (2008). [CrossRef]
- R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Oemer, M. Fuerst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Free-space distribution of entanglement and single photons over 144 km,” Nature Phys.3, 481 (2007). [CrossRef]
- M. Bourennane, A. Karlsson, G. Björk, N. Gisin, and N. Cerf, “Quantum key distribution using multilevel encoding: security analysis,” J. Phys. A35, 10065 (2002). [CrossRef]
- N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett.88, 127902 (2002). [CrossRef] [PubMed]
- Eq. (27) in [71] corresponds to setting I= 0 with c→ 0, M→ Nand p→eBN.
- J. B. Spring, P. S. Salter, B. J. Metcalf, P. C. Humphreys, M. Moore, N. Thomas-Peter, M. Barbieri, X.-M. Jin, N. K. Langford, W. S. Kolthammer, M. J. Booth, and I. A. Walmsley, “On-chip low loss heralded source of pure single photons,” arXiv:1304.7781 (2013).
- G. Harder, V. Ansari, B. Brecht, T. Dirmeier, C. Marquardt, and C. Silberhorn, “An optimized photon pair source for quantum circuits,” arXiv:1304.6635 (2013).
- D. Payne and W. Gambling, “New silica-based low-loss optical fibre,” Electron. Lett.10, 289–290 (1974). [CrossRef]
- I. Ali-Khan, C. J. Broadbent, and J. C. Howell, “Large-alphabet quantum key distribution using energy-time entangled bipartite states,” Phys. Rev. Lett.98, 060503 (2007). [CrossRef] [PubMed]
- I. Ali-Khan and J. C. Howell, “Experimental demonstration of high two-photon time-energy entanglement,” Phys. Rev. A73, 031801 (2006). [CrossRef]
- E. Martin-Lopez, A. Laing, T. Lawson, R. Alvarez, X.-Q. Zhou, and J. L. O’Brien, “Experimental realization of Shor’s quantum factoring algorithm using qubit recycling,” Nat. Photonics6, 773–776 (2012). [CrossRef]
- G. Harder, V. Ansari, B. Brecht, T. Dirmeier, C. Marquardt, and C. Silberhorn, “An optimized photon pair source for quantum circuits,” arXiv:1304.6635 (2013).
- J. Azaña, “Time-to-frequency conversion using a single time lens,” Opt. Commun.217, 205–209 (2003). [CrossRef]
- F. Marsili, V. Verma, J. Stern, S. Harrington, A. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. Shaw, R. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics7, 210–214 (2013). [CrossRef]
- L. Zhang, A. B. U’ren, R. Erdmann, K. O’Donnell, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Generation of highly entangled photon pairs for continuous variable Bell inequality violation,” J. Mod. Opt.54, 707–719 (2007). [CrossRef]
- W. Wasilewski, A. I. Lvovsky, K. Banaszek, and C. Radzewicz, “Pulsed squeezed light: simultaneous squeezing of multiple modes,” Phys. Rev. A73, 063819 (2006). [CrossRef]
- M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett.64, 270–272 (1994). [CrossRef]
- R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Oemer, M. Fuerst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Free-space distribution of entanglement and single photons over 144 km,” Nature Phys.3, 481 (2007). [CrossRef]
- B. P. Lanyon, T. J. Weinhold, N. K. Langford, M. Barbieri, D. F. V. James, A. Gilchrist, and A. G. White, “Experimental demonstration of a compiled version of Shor’s algorithm with quantum entanglement,” Phys. Rev. Lett.99, 250505 (2007). [CrossRef]
- J. B. Spring, P. S. Salter, B. J. Metcalf, P. C. Humphreys, M. Moore, N. Thomas-Peter, M. Barbieri, X.-M. Jin, N. K. Langford, W. S. Kolthammer, M. J. Booth, and I. A. Walmsley, “On-chip low loss heralded source of pure single photons,” arXiv:1304.7781 (2013).
- D. Gauthier, H. Guilbert, Y. Zhu, M. Shi, K. McCusker, B. Christensen, P. Kwiat, T. Brougham, S. Barnett, and V. Chandar, “Quantum key distribution using hyperentanglement,” in “Quantum Information and Measurement,” (Optical Society of America, 2012).
- N. Beaudry, T. Moroder, and N. Lütkenhaus, “Squashing models for optical measurements in quantum communication,” Phys. Rev. Lett.101, 93601 (2008). [CrossRef]
- C. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” Proceedings of IEEE International Conference on Computers, Systems and Signal Processing175–179 (1984).
- M. Bourennane, A. Karlsson, G. Björk, N. Gisin, and N. Cerf, “Quantum key distribution using multilevel encoding: security analysis,” J. Phys. A35, 10065 (2002). [CrossRef]
- R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Oemer, M. Fuerst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Free-space distribution of entanglement and single photons over 144 km,” Nature Phys.3, 481 (2007). [CrossRef]
- M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett.64, 270–272 (1994). [CrossRef]
- J. M. Renes and J.-C. Boileau, “Conjectured strong complementary information tradeoff,” Phys. Rev. Lett.103, 020402 (2009). [CrossRef] [PubMed]
- J. B. Spring, P. S. Salter, B. J. Metcalf, P. C. Humphreys, M. Moore, N. Thomas-Peter, M. Barbieri, X.-M. Jin, N. K. Langford, W. S. Kolthammer, M. J. Booth, and I. A. Walmsley, “On-chip low loss heralded source of pure single photons,” arXiv:1304.7781 (2013).
- M. Bourennane, A. Karlsson, G. Björk, N. Gisin, and N. Cerf, “Quantum key distribution using multilevel encoding: security analysis,” J. Phys. A35, 10065 (2002). [CrossRef]
- N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett.88, 127902 (2002). [CrossRef] [PubMed]
- W. P. Grice, R. Erdmann, I. A. Walmsley, and D. Branning, “Spectral distinguishability in ultrafast parametric down-conversion,” Phys. Rev. A57, R2289–R2292 (1998). [CrossRef]
- C. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” Proceedings of IEEE International Conference on Computers, Systems and Signal Processing175–179 (1984).
- S. Braunstein and S. Pirandola, “Side-channel-free quantum key distribution,” Phys. Rev. Lett.108, 130502 (2012). [CrossRef] [PubMed]
- G. Harder, V. Ansari, B. Brecht, T. Dirmeier, C. Marquardt, and C. Silberhorn, “An optimized photon pair source for quantum circuits,” arXiv:1304.6635 (2013).
- G. Brida, V. Caricato, M. Fedorov, M. Genovese, M. Gramegna, and S. Kulik, “Characterization of spectral entanglement of spontaneous parametric-down conversion biphotons in femtosecond pulsed regime,” Europhys. Lett.87, 64003 (2009). [CrossRef]
- J. Schneeloch, P. B. Dixon, G. A. Howland, C. J. Broadbent, and J. C. Howell, “Violation of continuous-variable Einstein-Podolsky-Rosen steering with discrete measurements,” Phys. Rev. Lett.110, 130407 (2013). [CrossRef] [PubMed]
- J. Schneeloch, C. J. Broadbent, S. P. Walborn, E. G. Cavalcanti, and J. C. Howell, “EPR steering inequalities from entropic uncertainty relations,” arXiv:1303.7432 (2013).
- I. Ali-Khan, C. J. Broadbent, and J. C. Howell, “Large-alphabet quantum key distribution using energy-time entangled bipartite states,” Phys. Rev. Lett.98, 060503 (2007). [CrossRef] [PubMed]
- D. Gauthier, H. Guilbert, Y. Zhu, M. Shi, K. McCusker, B. Christensen, P. Kwiat, T. Brougham, S. Barnett, and V. Chandar, “Quantum key distribution using hyperentanglement,” in “Quantum Information and Measurement,” (Optical Society of America, 2012).
- N. Gisin, G. Ribordy, H. Zbinden, D. Stucki, N. Brunner, and V. Scarani, “Towards practical and fast quantum cryptography,” arXiv:0411022 (2004).
- E. Saglamyurek, N. Sinclair, J. Jin, J. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Quantum memory for quantum repeaters,” in “International Quantum Electronics Conference,” (Optical Society of America, 2011).
- G. Brida, V. Caricato, M. Fedorov, M. Genovese, M. Gramegna, and S. Kulik, “Characterization of spectral entanglement of spontaneous parametric-down conversion biphotons in femtosecond pulsed regime,” Europhys. Lett.87, 64003 (2009). [CrossRef]
- J. Schneeloch, C. J. Broadbent, S. P. Walborn, E. G. Cavalcanti, and J. C. Howell, “EPR steering inequalities from entropic uncertainty relations,” arXiv:1303.7432 (2013).
- M. Bourennane, A. Karlsson, G. Björk, N. Gisin, and N. Cerf, “Quantum key distribution using multilevel encoding: security analysis,” J. Phys. A35, 10065 (2002). [CrossRef]
- F. Grosshans and N. J. Cerf, “Continuous-variable quantum cryptography is secure against non-gaussian attacks,” Phys. Rev. Lett.92, 047905 (2004). [CrossRef] [PubMed]
- N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett.88, 127902 (2002). [CrossRef] [PubMed]
- J. Eberly, K. Chan, and C. Law, “Schmidt-mode analysis of entanglement for quantum information studies,” in “Quantum Communication and Information Technologies,” (Springer, 2003), pp. 1–12. [CrossRef]
- D. Gauthier, H. Guilbert, Y. Zhu, M. Shi, K. McCusker, B. Christensen, P. Kwiat, T. Brougham, S. Barnett, and V. Chandar, “Quantum key distribution using hyperentanglement,” in “Quantum Information and Measurement,” (Optical Society of America, 2012).
- Z. Chang-Hua, P. Chang-Xing, Q. Dong-Xiao, G. Jing-Liang, C. Nan, and Y. Yun-Hui, “A new quantum key distribution scheme based on frequency and time coding,” Chin. Phys. Lett.27, 090301 (2010). [CrossRef]
- Z. Chang-Hua, P. Chang-Xing, Q. Dong-Xiao, G. Jing-Liang, C. Nan, and Y. Yun-Hui, “A new quantum key distribution scheme based on frequency and time coding,” Chin. Phys. Lett.27, 090301 (2010). [CrossRef]
- D. Gauthier, H. Guilbert, Y. Zhu, M. Shi, K. McCusker, B. Christensen, P. Kwiat, T. Brougham, S. Barnett, and V. Chandar, “Quantum key distribution using hyperentanglement,” in “Quantum Information and Measurement,” (Optical Society of America, 2012).
- L. Duan, M. Lukin, J. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature414, 413–418 (2001). [CrossRef] [PubMed]
- O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett.102, 123603 (2009). [CrossRef] [PubMed]
- S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, and T. Louis, “20-ps Timing resolution with single-photon avalanche diodes,” Rev. Sci. Instrum.60, 1104 (1989). [CrossRef]
- H. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett.108, 130503 (2012). [CrossRef] [PubMed]
- L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar, J.-M. Merolla, and K. P. Huy, “Frequency-bin entangled photons,” Phys. Rev. A82, 013804 (2010). [CrossRef]
- A. Datta, L. Zhang, N. Thomas-Peter, U. Dorner, B. J. Smith, and I. A. Walmsley, “Quantum metrology with imperfect states and detectors,” Phys. Rev. A83, 063836 (2011). [CrossRef]
- J. Mower, Z. Zhang, P. Desjardins, C. Lee, J. H. Shapiro, and D. Englund, “High-dimensional quantum key distribution using dispersive optics,” arXiv:1210.4501 (2012).
- G. Harder, V. Ansari, B. Brecht, T. Dirmeier, C. Marquardt, and C. Silberhorn, “An optimized photon pair source for quantum circuits,” arXiv:1304.6635 (2013).
- J. Schneeloch, P. B. Dixon, G. A. Howland, C. J. Broadbent, and J. C. Howell, “Violation of continuous-variable Einstein-Podolsky-Rosen steering with discrete measurements,” Phys. Rev. Lett.110, 130407 (2013). [CrossRef] [PubMed]
- Z. Chang-Hua, P. Chang-Xing, Q. Dong-Xiao, G. Jing-Liang, C. Nan, and Y. Yun-Hui, “A new quantum key distribution scheme based on frequency and time coding,” Chin. Phys. Lett.27, 090301 (2010). [CrossRef]
- J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photonics7363–366 (2013). [CrossRef]
- A. Datta, L. Zhang, N. Thomas-Peter, U. Dorner, B. J. Smith, and I. A. Walmsley, “Quantum metrology with imperfect states and detectors,” Phys. Rev. A83, 063836 (2011). [CrossRef]
- L. Duan, M. Lukin, J. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature414, 413–418 (2001). [CrossRef] [PubMed]
- J. Eberly, K. Chan, and C. Law, “Schmidt-mode analysis of entanglement for quantum information studies,” in “Quantum Communication and Information Technologies,” (Springer, 2003), pp. 1–12. [CrossRef]
- C. K. Law, I. A. Walmsley, and J. H. Eberly, “Continuous frequency entanglement: effective finite hilbert space and entropy control,” Phys. Rev. Lett.84, 5304–5307 (2000). [CrossRef] [PubMed]
- A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett.67, 661–663 (1991). [CrossRef] [PubMed]
- L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar, J.-M. Merolla, and K. P. Huy, “Frequency-bin entangled photons,” Phys. Rev. A82, 013804 (2010). [CrossRef]
- J. Mower, F. Wong, J. H. Shapiro, and D. Englund, “Dense wavelength division multiplexed quantum key distribution using entangled photons,” arXiv:1110.4867v1 (2011).
- J. Mower, Z. Zhang, P. Desjardins, C. Lee, J. H. Shapiro, and D. Englund, “High-dimensional quantum key distribution using dispersive optics,” arXiv:1210.4501 (2012).
- L. Zhang, A. B. U’ren, R. Erdmann, K. O’Donnell, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Generation of highly entangled photon pairs for continuous variable Bell inequality violation,” J. Mod. Opt.54, 707–719 (2007). [CrossRef]
- W. P. Grice, R. Erdmann, I. A. Walmsley, and D. Branning, “Spectral distinguishability in ultrafast parametric down-conversion,” Phys. Rev. A57, R2289–R2292 (1998). [CrossRef]
- G. Brida, V. Caricato, M. Fedorov, M. Genovese, M. Gramegna, and S. Kulik, “Characterization of spectral entanglement of spontaneous parametric-down conversion biphotons in femtosecond pulsed regime,” Europhys. Lett.87, 64003 (2009). [CrossRef]
- J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photonics7363–366 (2013). [CrossRef]
- A. Hayat, X. Xing, A. Feizpour, and A. M. Steinberg, “Multidimensional quantum information based on single-photon temporal wavepackets,” arXiv:1212.1483 (2012).
- P. Rohde, J. Fitzsimons, and A. Gilchrist, “The information capacity of a single photon,” arXiv:1211.1427 (2012).
- R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Oemer, M. Fuerst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Free-space distribution of entanglement and single photons over 144 km,” Nature Phys.3, 481 (2007). [CrossRef]
- S. Galbraith, Mathematics of public key cryptography (Cambridge University, 2012). [CrossRef]
- D. Payne and W. Gambling, “New silica-based low-loss optical fibre,” Electron. Lett.10, 289–290 (1974). [CrossRef]
- D. Gauthier, H. Guilbert, Y. Zhu, M. Shi, K. McCusker, B. Christensen, P. Kwiat, T. Brougham, S. Barnett, and V. Chandar, “Quantum key distribution using hyperentanglement,” in “Quantum Information and Measurement,” (Optical Society of America, 2012).
- G. Brida, V. Caricato, M. Fedorov, M. Genovese, M. Gramegna, and S. Kulik, “Characterization of spectral entanglement of spontaneous parametric-down conversion biphotons in femtosecond pulsed regime,” Europhys. Lett.87, 64003 (2009). [CrossRef]
- E. Saglamyurek, N. Sinclair, J. Jin, J. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Quantum memory for quantum repeaters,” in “International Quantum Electronics Conference,” (Optical Society of America, 2011).
- F. Marsili, V. Verma, J. Stern, S. Harrington, A. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. Shaw, R. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics7, 210–214 (2013). [CrossRef]
- S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, and T. Louis, “20-ps Timing resolution with single-photon avalanche diodes,” Rev. Sci. Instrum.60, 1104 (1989). [CrossRef]
- B. P. Lanyon, T. J. Weinhold, N. K. Langford, M. Barbieri, D. F. V. James, A. Gilchrist, and A. G. White, “Experimental demonstration of a compiled version of Shor’s algorithm with quantum entanglement,” Phys. Rev. Lett.99, 250505 (2007). [CrossRef]
- P. Rohde, J. Fitzsimons, and A. Gilchrist, “The information capacity of a single photon,” arXiv:1211.1427 (2012).
- N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett.88, 127902 (2002). [CrossRef] [PubMed]
- M. Bourennane, A. Karlsson, G. Björk, N. Gisin, and N. Cerf, “Quantum key distribution using multilevel encoding: security analysis,” J. Phys. A35, 10065 (2002). [CrossRef]
- N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74, 145–195 (2002). [CrossRef]
- A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, ““Plug and play” systems for quantum cryptography,” Appl. Phys. Lett.70, 793–795 (1997). [CrossRef]
- N. Gisin, G. Ribordy, H. Zbinden, D. Stucki, N. Brunner, and V. Scarani, “Towards practical and fast quantum cryptography,” arXiv:0411022 (2004).
- M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett.64, 270–272 (1994). [CrossRef]
- D. Tasca, L. Rudnicki, R. Gomes, F. Toscano, and S. Walborn, “Reliable entanglement detection under coarse-grained measurements,” arXiv:1210.5945 (2012).
- G. Brida, V. Caricato, M. Fedorov, M. Genovese, M. Gramegna, and S. Kulik, “Characterization of spectral entanglement of spontaneous parametric-down conversion biphotons in femtosecond pulsed regime,” Europhys. Lett.87, 64003 (2009). [CrossRef]
- W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A64, 063815 (2001). [CrossRef]
- W. P. Grice, R. Erdmann, I. A. Walmsley, and D. Branning, “Spectral distinguishability in ultrafast parametric down-conversion,” Phys. Rev. A57, R2289–R2292 (1998). [CrossRef]
- W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A56, 1627–1634 (1997). [CrossRef]
- F. Grosshans and N. J. Cerf, “Continuous-variable quantum cryptography is secure against non-gaussian attacks,” Phys. Rev. Lett.92, 047905 (2004). [CrossRef] [PubMed]
- D. Gauthier, H. Guilbert, Y. Zhu, M. Shi, K. McCusker, B. Christensen, P. Kwiat, T. Brougham, S. Barnett, and V. Chandar, “Quantum key distribution using hyperentanglement,” in “Quantum Information and Measurement,” (Optical Society of America, 2012).
- H. Takesue, S. Nam, Q. Zhang, R. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-db channel loss using superconducting single-photon detectors,” Nat. Photonics1, 343–348 (2007). [CrossRef]
- R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics3, 696–705 (2009). [CrossRef]
- G. Harder, V. Ansari, B. Brecht, T. Dirmeier, C. Marquardt, and C. Silberhorn, “An optimized photon pair source for quantum circuits,” arXiv:1304.6635 (2013).
- F. Marsili, V. Verma, J. Stern, S. Harrington, A. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. Shaw, R. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics7, 210–214 (2013). [CrossRef]
- A. Hayat, X. Xing, A. Feizpour, and A. M. Steinberg, “Multidimensional quantum information based on single-photon temporal wavepackets,” arXiv:1212.1483 (2012).
- A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, ““Plug and play” systems for quantum cryptography,” Appl. Phys. Lett.70, 793–795 (1997). [CrossRef]
- H. Takesue, S. Nam, Q. Zhang, R. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-db channel loss using superconducting single-photon detectors,” Nat. Photonics1, 343–348 (2007). [CrossRef]
- J. Schneeloch, C. J. Broadbent, S. P. Walborn, E. G. Cavalcanti, and J. C. Howell, “EPR steering inequalities from entropic uncertainty relations,” arXiv:1303.7432 (2013).
- J. Schneeloch, P. B. Dixon, G. A. Howland, C. J. Broadbent, and J. C. Howell, “Violation of continuous-variable Einstein-Podolsky-Rosen steering with discrete measurements,” Phys. Rev. Lett.110, 130407 (2013). [CrossRef] [PubMed]
- I. Ali-Khan, C. J. Broadbent, and J. C. Howell, “Large-alphabet quantum key distribution using energy-time entangled bipartite states,” Phys. Rev. Lett.98, 060503 (2007). [CrossRef] [PubMed]
- I. Ali-Khan and J. C. Howell, “Experimental demonstration of high two-photon time-energy entanglement,” Phys. Rev. A73, 031801 (2006). [CrossRef]
- J. Schneeloch, P. B. Dixon, G. A. Howland, C. J. Broadbent, and J. C. Howell, “Violation of continuous-variable Einstein-Podolsky-Rosen steering with discrete measurements,” Phys. Rev. Lett.110, 130407 (2013). [CrossRef] [PubMed]
- J. B. Spring, P. S. Salter, B. J. Metcalf, P. C. Humphreys, M. Moore, N. Thomas-Peter, M. Barbieri, X.-M. Jin, N. K. Langford, W. S. Kolthammer, M. J. Booth, and I. A. Walmsley, “On-chip low loss heralded source of pure single photons,” arXiv:1304.7781 (2013).
- A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, ““Plug and play” systems for quantum cryptography,” Appl. Phys. Lett.70, 793–795 (1997). [CrossRef]
- L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar, J.-M. Merolla, and K. P. Huy, “Frequency-bin entangled photons,” Phys. Rev. A82, 013804 (2010). [CrossRef]
- B. P. Lanyon, T. J. Weinhold, N. K. Langford, M. Barbieri, D. F. V. James, A. Gilchrist, and A. G. White, “Experimental demonstration of a compiled version of Shor’s algorithm with quantum entanglement,” Phys. Rev. Lett.99, 250505 (2007). [CrossRef]
- R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Oemer, M. Fuerst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Free-space distribution of entanglement and single photons over 144 km,” Nature Phys.3, 481 (2007). [CrossRef]
- E. Saglamyurek, N. Sinclair, J. Jin, J. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Quantum memory for quantum repeaters,” in “International Quantum Electronics Conference,” (Optical Society of America, 2011).
- J. B. Spring, P. S. Salter, B. J. Metcalf, P. C. Humphreys, M. Moore, N. Thomas-Peter, M. Barbieri, X.-M. Jin, N. K. Langford, W. S. Kolthammer, M. J. Booth, and I. A. Walmsley, “On-chip low loss heralded source of pure single photons,” arXiv:1304.7781 (2013).
- Z. Chang-Hua, P. Chang-Xing, Q. Dong-Xiao, G. Jing-Liang, C. Nan, and Y. Yun-Hui, “A new quantum key distribution scheme based on frequency and time coding,” Chin. Phys. Lett.27, 090301 (2010). [CrossRef]
- N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett.88, 127902 (2002). [CrossRef] [PubMed]
- M. Bourennane, A. Karlsson, G. Björk, N. Gisin, and N. Cerf, “Quantum key distribution using multilevel encoding: security analysis,” J. Phys. A35, 10065 (2002). [CrossRef]
- M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett.64, 270–272 (1994). [CrossRef]
- C. V. Bennett and B. H. Kolner, “Upconversion time microscope demonstrating 103 x magnification of femtosecond waveforms,” Opt. Lett.24, 783–785 (1999). [CrossRef]
- B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron.30, 1951–1963 (1994). [CrossRef]
- J. B. Spring, P. S. Salter, B. J. Metcalf, P. C. Humphreys, M. Moore, N. Thomas-Peter, M. Barbieri, X.-M. Jin, N. K. Langford, W. S. Kolthammer, M. J. Booth, and I. A. Walmsley, “On-chip low loss heralded source of pure single photons,” arXiv:1304.7781 (2013).
- M. Krishna and K. Parthasarathy, “An entropic uncertainty principle for quantum measurements,” Sankhyâ A842–851 (2002).
- G. Brida, V. Caricato, M. Fedorov, M. Genovese, M. Gramegna, and S. Kulik, “Characterization of spectral entanglement of spontaneous parametric-down conversion biphotons in femtosecond pulsed regime,” Europhys. Lett.87, 64003 (2009). [CrossRef]
- D. Gauthier, H. Guilbert, Y. Zhu, M. Shi, K. McCusker, B. Christensen, P. Kwiat, T. Brougham, S. Barnett, and V. Chandar, “Quantum key distribution using hyperentanglement,” in “Quantum Information and Measurement,” (Optical Society of America, 2012).
- S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, and T. Louis, “20-ps Timing resolution with single-photon avalanche diodes,” Rev. Sci. Instrum.60, 1104 (1989). [CrossRef]
- E. Martin-Lopez, A. Laing, T. Lawson, R. Alvarez, X.-Q. Zhou, and J. L. O’Brien, “Experimental realization of Shor’s quantum factoring algorithm using qubit recycling,” Nat. Photonics6, 773–776 (2012). [CrossRef]
- B. P. Lanyon, T. J. Weinhold, N. K. Langford, M. Barbieri, D. F. V. James, A. Gilchrist, and A. G. White, “Experimental demonstration of a compiled version of Shor’s algorithm with quantum entanglement,” Phys. Rev. Lett.99, 250505 (2007). [CrossRef]
- J. B. Spring, P. S. Salter, B. J. Metcalf, P. C. Humphreys, M. Moore, N. Thomas-Peter, M. Barbieri, X.-M. Jin, N. K. Langford, W. S. Kolthammer, M. J. Booth, and I. A. Walmsley, “On-chip low loss heralded source of pure single photons,” arXiv:1304.7781 (2013).
- B. P. Lanyon, T. J. Weinhold, N. K. Langford, M. Barbieri, D. F. V. James, A. Gilchrist, and A. G. White, “Experimental demonstration of a compiled version of Shor’s algorithm with quantum entanglement,” Phys. Rev. Lett.99, 250505 (2007). [CrossRef]
- J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photonics7363–366 (2013). [CrossRef]
- J. Eberly, K. Chan, and C. Law, “Schmidt-mode analysis of entanglement for quantum information studies,” in “Quantum Communication and Information Technologies,” (Springer, 2003), pp. 1–12. [CrossRef]
- C. K. Law, I. A. Walmsley, and J. H. Eberly, “Continuous frequency entanglement: effective finite hilbert space and entropy control,” Phys. Rev. Lett.84, 5304–5307 (2000). [CrossRef] [PubMed]
- D. Simon, N. Lawrence, J. Trevino, L. Negro, and A. Sergienko, “Quantum key distribution with Fibonacci orbital angular momentum states,” arXiv:1206.3548 (2012).
- E. Martin-Lopez, A. Laing, T. Lawson, R. Alvarez, X.-Q. Zhou, and J. L. O’Brien, “Experimental realization of Shor’s quantum factoring algorithm using qubit recycling,” Nat. Photonics6, 773–776 (2012). [CrossRef]
- J. Mower, Z. Zhang, P. Desjardins, C. Lee, J. H. Shapiro, and D. Englund, “High-dimensional quantum key distribution using dispersive optics,” arXiv:1210.4501 (2012).
- R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Oemer, M. Fuerst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Free-space distribution of entanglement and single photons over 144 km,” Nature Phys.3, 481 (2007). [CrossRef]
- F. Marsili, V. Verma, J. Stern, S. Harrington, A. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. Shaw, R. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics7, 210–214 (2013). [CrossRef]
- A. Lita, A. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express16, 3032–3040 (2008). [CrossRef] [PubMed]
- H. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett.108, 130503 (2012). [CrossRef] [PubMed]
- S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, and T. Louis, “20-ps Timing resolution with single-photon avalanche diodes,” Rev. Sci. Instrum.60, 1104 (1989). [CrossRef]
- L. Duan, M. Lukin, J. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature414, 413–418 (2001). [CrossRef] [PubMed]
- O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett.102, 123603 (2009). [CrossRef] [PubMed]
- L. Zhang, L. Neves, J. S. Lundeen, and I. A. Walmsley, “A characterization of the single-photon sensitivity of an electron multiplying charge-coupled device,” J. Phys. B42, 114011 (2009). [CrossRef]
- P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett.100, 133601 (2008). [CrossRef] [PubMed]
- N. Beaudry, T. Moroder, and N. Lütkenhaus, “Squashing models for optical measurements in quantum communication,” Phys. Rev. Lett.101, 93601 (2008). [CrossRef]
- W. Wasilewski, A. I. Lvovsky, K. Banaszek, and C. Radzewicz, “Pulsed squeezed light: simultaneous squeezing of multiple modes,” Phys. Rev. A73, 063819 (2006). [CrossRef]
- G. Harder, V. Ansari, B. Brecht, T. Dirmeier, C. Marquardt, and C. Silberhorn, “An optimized photon pair source for quantum circuits,” arXiv:1304.6635 (2013).
- F. Marsili, V. Verma, J. Stern, S. Harrington, A. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. Shaw, R. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics7, 210–214 (2013). [CrossRef]
- E. Martin-Lopez, A. Laing, T. Lawson, R. Alvarez, X.-Q. Zhou, and J. L. O’Brien, “Experimental realization of Shor’s quantum factoring algorithm using qubit recycling,” Nat. Photonics6, 773–776 (2012). [CrossRef]
- L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar, J.-M. Merolla, and K. P. Huy, “Frequency-bin entangled photons,” Phys. Rev. A82, 013804 (2010). [CrossRef]
- D. Gauthier, H. Guilbert, Y. Zhu, M. Shi, K. McCusker, B. Christensen, P. Kwiat, T. Brougham, S. Barnett, and V. Chandar, “Quantum key distribution using hyperentanglement,” in “Quantum Information and Measurement,” (Optical Society of America, 2012).
- L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar, J.-M. Merolla, and K. P. Huy, “Frequency-bin entangled photons,” Phys. Rev. A82, 013804 (2010). [CrossRef]
- J. B. Spring, P. S. Salter, B. J. Metcalf, P. C. Humphreys, M. Moore, N. Thomas-Peter, M. Barbieri, X.-M. Jin, N. K. Langford, W. S. Kolthammer, M. J. Booth, and I. A. Walmsley, “On-chip low loss heralded source of pure single photons,” arXiv:1304.7781 (2013).
- R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Oemer, M. Fuerst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Free-space distribution of entanglement and single photons over 144 km,” Nature Phys.3, 481 (2007). [CrossRef]
- F. Marsili, V. Verma, J. Stern, S. Harrington, A. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. Shaw, R. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics7, 210–214 (2013). [CrossRef]
- J. B. Spring, P. S. Salter, B. J. Metcalf, P. C. Humphreys, M. Moore, N. Thomas-Peter, M. Barbieri, X.-M. Jin, N. K. Langford, W. S. Kolthammer, M. J. Booth, and I. A. Walmsley, “On-chip low loss heralded source of pure single photons,” arXiv:1304.7781 (2013).
- N. Beaudry, T. Moroder, and N. Lütkenhaus, “Squashing models for optical measurements in quantum communication,” Phys. Rev. Lett.101, 93601 (2008). [CrossRef]
- M. Avenhaus, A. Eckstein, P. J. Mosley, and C. Silberhorn, “Fiber-assisted single-photon spectrograph,” Opt. Lett.34, 2873–2875 (2009). [CrossRef] [PubMed]
- O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett.102, 123603 (2009). [CrossRef] [PubMed]
- P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett.100, 133601 (2008). [CrossRef] [PubMed]
- J. Mower, Z. Zhang, P. Desjardins, C. Lee, J. H. Shapiro, and D. Englund, “High-dimensional quantum key distribution using dispersive optics,” arXiv:1210.4501 (2012).
- J. Mower, F. Wong, J. H. Shapiro, and D. Englund, “Dense wavelength division multiplexed quantum key distribution using entangled photons,” arXiv:1110.4867v1 (2011).
- A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, ““Plug and play” systems for quantum cryptography,” Appl. Phys. Lett.70, 793–795 (1997). [CrossRef]
- H. Takesue, S. Nam, Q. Zhang, R. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-db channel loss using superconducting single-photon detectors,” Nat. Photonics1, 343–348 (2007). [CrossRef]
- F. Marsili, V. Verma, J. Stern, S. Harrington, A. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. Shaw, R. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics7, 210–214 (2013). [CrossRef]
- A. Lita, A. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express16, 3032–3040 (2008). [CrossRef] [PubMed]
- Z. Chang-Hua, P. Chang-Xing, Q. Dong-Xiao, G. Jing-Liang, C. Nan, and Y. Yun-Hui, “A new quantum key distribution scheme based on frequency and time coding,” Chin. Phys. Lett.27, 090301 (2010). [CrossRef]
- D. Simon, N. Lawrence, J. Trevino, L. Negro, and A. Sergienko, “Quantum key distribution with Fibonacci orbital angular momentum states,” arXiv:1206.3548 (2012).
- L. Zhang, L. Neves, J. S. Lundeen, and I. A. Walmsley, “A characterization of the single-photon sensitivity of an electron multiplying charge-coupled device,” J. Phys. B42, 114011 (2009). [CrossRef]
- L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar, J.-M. Merolla, and K. P. Huy, “Frequency-bin entangled photons,” Phys. Rev. A82, 013804 (2010). [CrossRef]
- E. Martin-Lopez, A. Laing, T. Lawson, R. Alvarez, X.-Q. Zhou, and J. L. O’Brien, “Experimental realization of Shor’s quantum factoring algorithm using qubit recycling,” Nat. Photonics6, 773–776 (2012). [CrossRef]
- L. Zhang, A. B. U’ren, R. Erdmann, K. O’Donnell, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Generation of highly entangled photon pairs for continuous variable Bell inequality violation,” J. Mod. Opt.54, 707–719 (2007). [CrossRef]
- E. Saglamyurek, N. Sinclair, J. Jin, J. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Quantum memory for quantum repeaters,” in “International Quantum Electronics Conference,” (Optical Society of America, 2011).
- R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Oemer, M. Fuerst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Free-space distribution of entanglement and single photons over 144 km,” Nature Phys.3, 481 (2007). [CrossRef]
- L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar, J.-M. Merolla, and K. P. Huy, “Frequency-bin entangled photons,” Phys. Rev. A82, 013804 (2010). [CrossRef]
- M. Krishna and K. Parthasarathy, “An entropic uncertainty principle for quantum measurements,” Sankhyâ A842–851 (2002).
- D. Payne and W. Gambling, “New silica-based low-loss optical fibre,” Electron. Lett.10, 289–290 (1974). [CrossRef]
- R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Oemer, M. Fuerst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Free-space distribution of entanglement and single photons over 144 km,” Nature Phys.3, 481 (2007). [CrossRef]
- S. Braunstein and S. Pirandola, “Side-channel-free quantum key distribution,” Phys. Rev. Lett.108, 130502 (2012). [CrossRef] [PubMed]
- O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett.102, 123603 (2009). [CrossRef] [PubMed]
- H. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett.108, 130503 (2012). [CrossRef] [PubMed]
- B. Qi, “Single-photon continuous-variable quantum key distribution based on the energy-time uncertainty relation,” Opt. Lett.31, 2795–2797 (2006). [CrossRef] [PubMed]
- B. Qi, “Quantum key distribution based on frequency-time coding: security and feasibility,” arXiv:1101.5995 (2011).
- W. Wasilewski, A. I. Lvovsky, K. Banaszek, and C. Radzewicz, “Pulsed squeezed light: simultaneous squeezing of multiple modes,” Phys. Rev. A73, 063819 (2006). [CrossRef]
- R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Oemer, M. Fuerst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Free-space distribution of entanglement and single photons over 144 km,” Nature Phys.3, 481 (2007). [CrossRef]
- J. Rarity, P. Tapster, J. Walker, and S. Seward, “Experimental demonstration of single photon rangefinding using parametric downconversion,” Appl. Opt.29, 2939–2943 (1990). [CrossRef] [PubMed]
- M. R. Ray and S. van Enk, “Missing data outside the detector range: application to continuous variable entanglement verification and quantum cryptography,” arXiv:1302.5087 (2013).
- J. M. Renes and J.-C. Boileau, “Conjectured strong complementary information tradeoff,” Phys. Rev. Lett.103, 020402 (2009). [CrossRef] [PubMed]
- J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photonics7363–366 (2013). [CrossRef]
- N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74, 145–195 (2002). [CrossRef]
- N. Gisin, G. Ribordy, H. Zbinden, D. Stucki, N. Brunner, and V. Scarani, “Towards practical and fast quantum cryptography,” arXiv:0411022 (2004).
- E. Saglamyurek, N. Sinclair, J. Jin, J. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Quantum memory for quantum repeaters,” in “International Quantum Electronics Conference,” (Optical Society of America, 2011).
- S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, and T. Louis, “20-ps Timing resolution with single-photon avalanche diodes,” Rev. Sci. Instrum.60, 1104 (1989). [CrossRef]
- P. Rohde, J. Fitzsimons, and A. Gilchrist, “The information capacity of a single photon,” arXiv:1211.1427 (2012).
- Ł. Rudnicki, S. Walborn, and F. Toscano, “Optimal uncertainty relations for extremely coarse-grained measurements,” Phys. Rev. A85, 042115 (2012). [CrossRef]
- D. Tasca, L. Rudnicki, R. Gomes, F. Toscano, and S. Walborn, “Reliable entanglement detection under coarse-grained measurements,” arXiv:1210.5945 (2012).
- E. Saglamyurek, N. Sinclair, J. Jin, J. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Quantum memory for quantum repeaters,” in “International Quantum Electronics Conference,” (Optical Society of America, 2011).
- J. B. Spring, P. S. Salter, B. J. Metcalf, P. C. Humphreys, M. Moore, N. Thomas-Peter, M. Barbieri, X.-M. Jin, N. K. Langford, W. S. Kolthammer, M. J. Booth, and I. A. Walmsley, “On-chip low loss heralded source of pure single photons,” arXiv:1304.7781 (2013).
- N. Gisin, G. Ribordy, H. Zbinden, D. Stucki, N. Brunner, and V. Scarani, “Towards practical and fast quantum cryptography,” arXiv:0411022 (2004).
- R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Oemer, M. Fuerst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Free-space distribution of entanglement and single photons over 144 km,” Nature Phys.3, 481 (2007). [CrossRef]
- R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Oemer, M. Fuerst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Free-space distribution of entanglement and single photons over 144 km,” Nature Phys.3, 481 (2007). [CrossRef]
- J. Schneeloch, P. B. Dixon, G. A. Howland, C. J. Broadbent, and J. C. Howell, “Violation of continuous-variable Einstein-Podolsky-Rosen steering with discrete measurements,” Phys. Rev. Lett.110, 130407 (2013). [CrossRef] [PubMed]
- J. Schneeloch, C. J. Broadbent, S. P. Walborn, E. G. Cavalcanti, and J. C. Howell, “EPR steering inequalities from entropic uncertainty relations,” arXiv:1303.7432 (2013).
- D. Simon, N. Lawrence, J. Trevino, L. Negro, and A. Sergienko, “Quantum key distribution with Fibonacci orbital angular momentum states,” arXiv:1206.3548 (2012).
- J. H. Shapiro, “Defeating passive eavesdropping with quantum illumination,” Phys. Rev. A80, 022320 (2009). [CrossRef]
- J. Mower, Z. Zhang, P. Desjardins, C. Lee, J. H. Shapiro, and D. Englund, “High-dimensional quantum key distribution using dispersive optics,” arXiv:1210.4501 (2012).
- J. Mower, F. Wong, J. H. Shapiro, and D. Englund, “Dense wavelength division multiplexed quantum key distribution using entangled photons,” arXiv:1110.4867v1 (2011).
- F. Marsili, V. Verma, J. Stern, S. Harrington, A. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. Shaw, R. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics7, 210–214 (2013). [CrossRef]
- D. Gauthier, H. Guilbert, Y. Zhu, M. Shi, K. McCusker, B. Christensen, P. Kwiat, T. Brougham, S. Barnett, and V. Chandar, “Quantum key distribution using hyperentanglement,” in “Quantum Information and Measurement,” (Optical Society of America, 2012).
- P. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” Appl. Math. J. Comp26, 1484–1509 (1997).
- M. Avenhaus, A. Eckstein, P. J. Mosley, and C. Silberhorn, “Fiber-assisted single-photon spectrograph,” Opt. Lett.34, 2873–2875 (2009). [CrossRef] [PubMed]
- L. Zhang, C. Silberhorn, and I. A. Walmsley, “Secure quantum key distribution using continuous variables of single photons,” Phys. Rev. Lett.100, 110504 (2008). [CrossRef] [PubMed]
- P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett.100, 133601 (2008). [CrossRef] [PubMed]
- L. Zhang, A. B. U’ren, R. Erdmann, K. O’Donnell, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Generation of highly entangled photon pairs for continuous variable Bell inequality violation,” J. Mod. Opt.54, 707–719 (2007). [CrossRef]
- G. Harder, V. Ansari, B. Brecht, T. Dirmeier, C. Marquardt, and C. Silberhorn, “An optimized photon pair source for quantum circuits,” arXiv:1304.6635 (2013).
- D. Simon, N. Lawrence, J. Trevino, L. Negro, and A. Sergienko, “Quantum key distribution with Fibonacci orbital angular momentum states,” arXiv:1206.3548 (2012).
- E. Saglamyurek, N. Sinclair, J. Jin, J. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Quantum memory for quantum repeaters,” in “International Quantum Electronics Conference,” (Optical Society of America, 2011).
- E. Saglamyurek, N. Sinclair, J. Jin, J. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Quantum memory for quantum repeaters,” in “International Quantum Electronics Conference,” (Optical Society of America, 2011).
- A. Datta, L. Zhang, N. Thomas-Peter, U. Dorner, B. J. Smith, and I. A. Walmsley, “Quantum metrology with imperfect states and detectors,” Phys. Rev. A83, 063836 (2011). [CrossRef]
- O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett.102, 123603 (2009). [CrossRef] [PubMed]
- P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett.100, 133601 (2008). [CrossRef] [PubMed]
- R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Oemer, M. Fuerst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Free-space distribution of entanglement and single photons over 144 km,” Nature Phys.3, 481 (2007). [CrossRef]
- E. Saglamyurek, N. Sinclair, J. Jin, J. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Quantum memory for quantum repeaters,” in “International Quantum Electronics Conference,” (Optical Society of America, 2011).
- J. B. Spring, P. S. Salter, B. J. Metcalf, P. C. Humphreys, M. Moore, N. Thomas-Peter, M. Barbieri, X.-M. Jin, N. K. Langford, W. S. Kolthammer, M. J. Booth, and I. A. Walmsley, “On-chip low loss heralded source of pure single photons,” arXiv:1304.7781 (2013).
- A. Hayat, X. Xing, A. Feizpour, and A. M. Steinberg, “Multidimensional quantum information based on single-photon temporal wavepackets,” arXiv:1212.1483 (2012).
- F. Marsili, V. Verma, J. Stern, S. Harrington, A. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. Shaw, R. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics7, 210–214 (2013). [CrossRef]
- N. Gisin, G. Ribordy, H. Zbinden, D. Stucki, N. Brunner, and V. Scarani, “Towards practical and fast quantum cryptography,” arXiv:0411022 (2004).
- H. Takesue, K. Harada, K. Tamaki, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Long-distance entanglement-based quantum key distribution experiment using practical detectors,” Opt. Express18, 16777–16787 (2010). [CrossRef] [PubMed]
- H. Takesue, S. Nam, Q. Zhang, R. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-db channel loss using superconducting single-photon detectors,” Nat. Photonics1, 343–348 (2007). [CrossRef]
- H. Takesue, K. Harada, K. Tamaki, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Long-distance entanglement-based quantum key distribution experiment using practical detectors,” Opt. Express18, 16777–16787 (2010). [CrossRef] [PubMed]
- H. Takesue, S. Nam, Q. Zhang, R. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-db channel loss using superconducting single-photon detectors,” Nat. Photonics1, 343–348 (2007). [CrossRef]
- D. Tasca, L. Rudnicki, R. Gomes, F. Toscano, and S. Walborn, “Reliable entanglement detection under coarse-grained measurements,” arXiv:1210.5945 (2012).
- A. Datta, L. Zhang, N. Thomas-Peter, U. Dorner, B. J. Smith, and I. A. Walmsley, “Quantum metrology with imperfect states and detectors,” Phys. Rev. A83, 063836 (2011). [CrossRef]
- J. B. Spring, P. S. Salter, B. J. Metcalf, P. C. Humphreys, M. Moore, N. Thomas-Peter, M. Barbieri, X.-M. Jin, N. K. Langford, W. S. Kolthammer, M. J. Booth, and I. A. Walmsley, “On-chip low loss heralded source of pure single photons,” arXiv:1304.7781 (2013).
- R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Oemer, M. Fuerst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Free-space distribution of entanglement and single photons over 144 km,” Nature Phys.3, 481 (2007). [CrossRef]
- N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74, 145–195 (2002). [CrossRef]
- A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, ““Plug and play” systems for quantum cryptography,” Appl. Phys. Lett.70, 793–795 (1997). [CrossRef]
- E. Saglamyurek, N. Sinclair, J. Jin, J. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Quantum memory for quantum repeaters,” in “International Quantum Electronics Conference,” (Optical Society of America, 2011).
- Ł. Rudnicki, S. Walborn, and F. Toscano, “Optimal uncertainty relations for extremely coarse-grained measurements,” Phys. Rev. A85, 042115 (2012). [CrossRef]
- D. Tasca, L. Rudnicki, R. Gomes, F. Toscano, and S. Walborn, “Reliable entanglement detection under coarse-grained measurements,” arXiv:1210.5945 (2012).
- D. Simon, N. Lawrence, J. Trevino, L. Negro, and A. Sergienko, “Quantum key distribution with Fibonacci orbital angular momentum states,” arXiv:1206.3548 (2012).
- R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Oemer, M. Fuerst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Free-space distribution of entanglement and single photons over 144 km,” Nature Phys.3, 481 (2007). [CrossRef]
- P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett.100, 133601 (2008). [CrossRef] [PubMed]
- L. Zhang, A. B. U’ren, R. Erdmann, K. O’Donnell, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Generation of highly entangled photon pairs for continuous variable Bell inequality violation,” J. Mod. Opt.54, 707–719 (2007). [CrossRef]
- W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A64, 063815 (2001). [CrossRef]
- R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Oemer, M. Fuerst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Free-space distribution of entanglement and single photons over 144 km,” Nature Phys.3, 481 (2007). [CrossRef]
- M. R. Ray and S. van Enk, “Missing data outside the detector range: application to continuous variable entanglement verification and quantum cryptography,” arXiv:1302.5087 (2013).
- F. Marsili, V. Verma, J. Stern, S. Harrington, A. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. Shaw, R. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics7, 210–214 (2013). [CrossRef]
- F. Marsili, V. Verma, J. Stern, S. Harrington, A. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. Shaw, R. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics7, 210–214 (2013). [CrossRef]
- G. Vernam, “Cipher printing telegraph systems for secret wire and radio telegraphic communications,” Transactions of the American Institute of Electrical Engineers45, 295–301 (1926). [CrossRef]
- Ł. Rudnicki, S. Walborn, and F. Toscano, “Optimal uncertainty relations for extremely coarse-grained measurements,” Phys. Rev. A85, 042115 (2012). [CrossRef]
- D. Tasca, L. Rudnicki, R. Gomes, F. Toscano, and S. Walborn, “Reliable entanglement detection under coarse-grained measurements,” arXiv:1210.5945 (2012).
- J. Schneeloch, C. J. Broadbent, S. P. Walborn, E. G. Cavalcanti, and J. C. Howell, “EPR steering inequalities from entropic uncertainty relations,” arXiv:1303.7432 (2013).
- A. Datta, L. Zhang, N. Thomas-Peter, U. Dorner, B. J. Smith, and I. A. Walmsley, “Quantum metrology with imperfect states and detectors,” Phys. Rev. A83, 063836 (2011). [CrossRef]
- O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett.102, 123603 (2009). [CrossRef] [PubMed]
- L. Zhang, L. Neves, J. S. Lundeen, and I. A. Walmsley, “A characterization of the single-photon sensitivity of an electron multiplying charge-coupled device,” J. Phys. B42, 114011 (2009). [CrossRef]
- I. A. Walmsley and C. Dorrer, “Characterization of ultrashort electromagnetic pulses,” Adv. Opt. Photon.1, 308–437 (2009). [CrossRef]
- P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett.100, 133601 (2008). [CrossRef] [PubMed]
- L. Zhang, C. Silberhorn, and I. A. Walmsley, “Secure quantum key distribution using continuous variables of single photons,” Phys. Rev. Lett.100, 110504 (2008). [CrossRef] [PubMed]
- L. Zhang, A. B. U’ren, R. Erdmann, K. O’Donnell, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Generation of highly entangled photon pairs for continuous variable Bell inequality violation,” J. Mod. Opt.54, 707–719 (2007). [CrossRef]
- W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A64, 063815 (2001). [CrossRef]
- C. K. Law, I. A. Walmsley, and J. H. Eberly, “Continuous frequency entanglement: effective finite hilbert space and entropy control,” Phys. Rev. Lett.84, 5304–5307 (2000). [CrossRef] [PubMed]
- W. P. Grice, R. Erdmann, I. A. Walmsley, and D. Branning, “Spectral distinguishability in ultrafast parametric down-conversion,” Phys. Rev. A57, R2289–R2292 (1998). [CrossRef]
- W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A56, 1627–1634 (1997). [CrossRef]
- J. B. Spring, P. S. Salter, B. J. Metcalf, P. C. Humphreys, M. Moore, N. Thomas-Peter, M. Barbieri, X.-M. Jin, N. K. Langford, W. S. Kolthammer, M. J. Booth, and I. A. Walmsley, “On-chip low loss heralded source of pure single photons,” arXiv:1304.7781 (2013).
- W. Wasilewski, A. I. Lvovsky, K. Banaszek, and C. Radzewicz, “Pulsed squeezed light: simultaneous squeezing of multiple modes,” Phys. Rev. A73, 063819 (2006). [CrossRef]
- P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett.100, 133601 (2008). [CrossRef] [PubMed]
- R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Oemer, M. Fuerst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Free-space distribution of entanglement and single photons over 144 km,” Nature Phys.3, 481 (2007). [CrossRef]
- R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Oemer, M. Fuerst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Free-space distribution of entanglement and single photons over 144 km,” Nature Phys.3, 481 (2007). [CrossRef]
- B. P. Lanyon, T. J. Weinhold, N. K. Langford, M. Barbieri, D. F. V. James, A. Gilchrist, and A. G. White, “Experimental demonstration of a compiled version of Shor’s algorithm with quantum entanglement,” Phys. Rev. Lett.99, 250505 (2007). [CrossRef]
- B. P. Lanyon, T. J. Weinhold, N. K. Langford, M. Barbieri, D. F. V. James, A. Gilchrist, and A. G. White, “Experimental demonstration of a compiled version of Shor’s algorithm with quantum entanglement,” Phys. Rev. Lett.99, 250505 (2007). [CrossRef]
- J. Mower, F. Wong, J. H. Shapiro, and D. Englund, “Dense wavelength division multiplexed quantum key distribution using entangled photons,” arXiv:1110.4867v1 (2011).
- J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photonics7363–366 (2013). [CrossRef]
- A. Hayat, X. Xing, A. Feizpour, and A. M. Steinberg, “Multidimensional quantum information based on single-photon temporal wavepackets,” arXiv:1212.1483 (2012).
- H. Takesue, S. Nam, Q. Zhang, R. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-db channel loss using superconducting single-photon detectors,” Nat. Photonics1, 343–348 (2007). [CrossRef]
- Z. Chang-Hua, P. Chang-Xing, Q. Dong-Xiao, G. Jing-Liang, C. Nan, and Y. Yun-Hui, “A new quantum key distribution scheme based on frequency and time coding,” Chin. Phys. Lett.27, 090301 (2010). [CrossRef]
- N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74, 145–195 (2002). [CrossRef]
- A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, ““Plug and play” systems for quantum cryptography,” Appl. Phys. Lett.70, 793–795 (1997). [CrossRef]
- N. Gisin, G. Ribordy, H. Zbinden, D. Stucki, N. Brunner, and V. Scarani, “Towards practical and fast quantum cryptography,” arXiv:0411022 (2004).
- R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Oemer, M. Fuerst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Free-space distribution of entanglement and single photons over 144 km,” Nature Phys.3, 481 (2007). [CrossRef]
- A. Datta, L. Zhang, N. Thomas-Peter, U. Dorner, B. J. Smith, and I. A. Walmsley, “Quantum metrology with imperfect states and detectors,” Phys. Rev. A83, 063836 (2011). [CrossRef]
- L. Zhang, L. Neves, J. S. Lundeen, and I. A. Walmsley, “A characterization of the single-photon sensitivity of an electron multiplying charge-coupled device,” J. Phys. B42, 114011 (2009). [CrossRef]
- L. Zhang, C. Silberhorn, and I. A. Walmsley, “Secure quantum key distribution using continuous variables of single photons,” Phys. Rev. Lett.100, 110504 (2008). [CrossRef] [PubMed]
- L. Zhang, A. B. U’ren, R. Erdmann, K. O’Donnell, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Generation of highly entangled photon pairs for continuous variable Bell inequality violation,” J. Mod. Opt.54, 707–719 (2007). [CrossRef]
- H. Takesue, S. Nam, Q. Zhang, R. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-db channel loss using superconducting single-photon detectors,” Nat. Photonics1, 343–348 (2007). [CrossRef]
- J. Mower, Z. Zhang, P. Desjardins, C. Lee, J. H. Shapiro, and D. Englund, “High-dimensional quantum key distribution using dispersive optics,” arXiv:1210.4501 (2012).
- E. Martin-Lopez, A. Laing, T. Lawson, R. Alvarez, X.-Q. Zhou, and J. L. O’Brien, “Experimental realization of Shor’s quantum factoring algorithm using qubit recycling,” Nat. Photonics6, 773–776 (2012). [CrossRef]
- D. Gauthier, H. Guilbert, Y. Zhu, M. Shi, K. McCusker, B. Christensen, P. Kwiat, T. Brougham, S. Barnett, and V. Chandar, “Quantum key distribution using hyperentanglement,” in “Quantum Information and Measurement,” (Optical Society of America, 2012).
- L. Duan, M. Lukin, J. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature414, 413–418 (2001). [CrossRef] [PubMed]
Adv. Opt. Photon.
- I. A. Walmsley and C. Dorrer, “Characterization of ultrashort electromagnetic pulses,” Adv. Opt. Photon.1, 308–437 (2009). [CrossRef]
Appl. Math. J. Comp
- P. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” Appl. Math. J. Comp26, 1484–1509 (1997).
Appl. Opt.
- J. Rarity, P. Tapster, J. Walker, and S. Seward, “Experimental demonstration of single photon rangefinding using parametric downconversion,” Appl. Opt.29, 2939–2943 (1990). [CrossRef] [PubMed]
Appl. Phys. Lett.
- M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett.64, 270–272 (1994). [CrossRef]
- A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, ““Plug and play” systems for quantum cryptography,” Appl. Phys. Lett.70, 793–795 (1997). [CrossRef]
Chin. Phys. Lett.
- Z. Chang-Hua, P. Chang-Xing, Q. Dong-Xiao, G. Jing-Liang, C. Nan, and Y. Yun-Hui, “A new quantum key distribution scheme based on frequency and time coding,” Chin. Phys. Lett.27, 090301 (2010). [CrossRef]
Electron. Lett.
- D. Payne and W. Gambling, “New silica-based low-loss optical fibre,” Electron. Lett.10, 289–290 (1974). [CrossRef]
Europhys. Lett.
- G. Brida, V. Caricato, M. Fedorov, M. Genovese, M. Gramegna, and S. Kulik, “Characterization of spectral entanglement of spontaneous parametric-down conversion biphotons in femtosecond pulsed regime,” Europhys. Lett.87, 64003 (2009). [CrossRef]
IEEE J. Quantum Electron.
- B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron.30, 1951–1963 (1994). [CrossRef]
J. Mod. Opt.
- L. Zhang, A. B. U’ren, R. Erdmann, K. O’Donnell, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Generation of highly entangled photon pairs for continuous variable Bell inequality violation,” J. Mod. Opt.54, 707–719 (2007). [CrossRef]
J. Phys. A
- M. Bourennane, A. Karlsson, G. Björk, N. Gisin, and N. Cerf, “Quantum key distribution using multilevel encoding: security analysis,” J. Phys. A35, 10065 (2002). [CrossRef]
J. Phys. B
- L. Zhang, L. Neves, J. S. Lundeen, and I. A. Walmsley, “A characterization of the single-photon sensitivity of an electron multiplying charge-coupled device,” J. Phys. B42, 114011 (2009). [CrossRef]
Nat. Photonics
- H. Takesue, S. Nam, Q. Zhang, R. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-db channel loss using superconducting single-photon detectors,” Nat. Photonics1, 343–348 (2007). [CrossRef]
- J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photonics7363–366 (2013). [CrossRef]
- R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics3, 696–705 (2009). [CrossRef]
- F. Marsili, V. Verma, J. Stern, S. Harrington, A. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. Shaw, R. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics7, 210–214 (2013). [CrossRef]
- E. Martin-Lopez, A. Laing, T. Lawson, R. Alvarez, X.-Q. Zhou, and J. L. O’Brien, “Experimental realization of Shor’s quantum factoring algorithm using qubit recycling,” Nat. Photonics6, 773–776 (2012). [CrossRef]
Nature
- L. Duan, M. Lukin, J. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature414, 413–418 (2001). [CrossRef] [PubMed]
Nature Phys.
- R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Oemer, M. Fuerst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Free-space distribution of entanglement and single photons over 144 km,” Nature Phys.3, 481 (2007). [CrossRef]
Opt. Commun.
- J. Azaña, “Time-to-frequency conversion using a single time lens,” Opt. Commun.217, 205–209 (2003). [CrossRef]
Opt. Express
- A. Lita, A. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express16, 3032–3040 (2008). [CrossRef] [PubMed]
- H. Takesue, K. Harada, K. Tamaki, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Long-distance entanglement-based quantum key distribution experiment using practical detectors,” Opt. Express18, 16777–16787 (2010). [CrossRef] [PubMed]
Opt. Lett.
- R. Salem, M. Foster, A. Turner, D. Geraghty, M. Lipson, and A. Gaeta, “Optical time lens based on four-wave mixing on a silicon chip,” Opt. Lett.33, 1047–1049 (2008). [CrossRef] [PubMed]
- M. Avenhaus, A. Eckstein, P. J. Mosley, and C. Silberhorn, “Fiber-assisted single-photon spectrograph,” Opt. Lett.34, 2873–2875 (2009). [CrossRef] [PubMed]
- C. V. Bennett and B. H. Kolner, “Upconversion time microscope demonstrating 103 x magnification of femtosecond waveforms,” Opt. Lett.24, 783–785 (1999). [CrossRef]
- B. Qi, “Single-photon continuous-variable quantum key distribution based on the energy-time uncertainty relation,” Opt. Lett.31, 2795–2797 (2006). [CrossRef] [PubMed]
Phys. Rev. A
- W. P. Grice, R. Erdmann, I. A. Walmsley, and D. Branning, “Spectral distinguishability in ultrafast parametric down-conversion,” Phys. Rev. A57, R2289–R2292 (1998). [CrossRef]
- Ł. Rudnicki, S. Walborn, and F. Toscano, “Optimal uncertainty relations for extremely coarse-grained measurements,” Phys. Rev. A85, 042115 (2012). [CrossRef]
- W. Wasilewski, A. I. Lvovsky, K. Banaszek, and C. Radzewicz, “Pulsed squeezed light: simultaneous squeezing of multiple modes,” Phys. Rev. A73, 063819 (2006). [CrossRef]
- W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A64, 063815 (2001). [CrossRef]
- W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A56, 1627–1634 (1997). [CrossRef]
- L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar, J.-M. Merolla, and K. P. Huy, “Frequency-bin entangled photons,” Phys. Rev. A82, 013804 (2010). [CrossRef]
- J. H. Shapiro, “Defeating passive eavesdropping with quantum illumination,” Phys. Rev. A80, 022320 (2009). [CrossRef]
- I. Ali-Khan and J. C. Howell, “Experimental demonstration of high two-photon time-energy entanglement,” Phys. Rev. A73, 031801 (2006). [CrossRef]
- A. Datta, L. Zhang, N. Thomas-Peter, U. Dorner, B. J. Smith, and I. A. Walmsley, “Quantum metrology with imperfect states and detectors,” Phys. Rev. A83, 063836 (2011). [CrossRef]
Phys. Rev. Lett.
- B. P. Lanyon, T. J. Weinhold, N. K. Langford, M. Barbieri, D. F. V. James, A. Gilchrist, and A. G. White, “Experimental demonstration of a compiled version of Shor’s algorithm with quantum entanglement,” Phys. Rev. Lett.99, 250505 (2007). [CrossRef]
- S. Braunstein and S. Pirandola, “Side-channel-free quantum key distribution,” Phys. Rev. Lett.108, 130502 (2012). [CrossRef] [PubMed]
- H. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett.108, 130503 (2012). [CrossRef] [PubMed]
- A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett.67, 661–663 (1991). [CrossRef] [PubMed]
- I. Ali-Khan, C. J. Broadbent, and J. C. Howell, “Large-alphabet quantum key distribution using energy-time entangled bipartite states,” Phys. Rev. Lett.98, 060503 (2007). [CrossRef] [PubMed]
- P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett.100, 133601 (2008). [CrossRef] [PubMed]
- O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett.102, 123603 (2009). [CrossRef] [PubMed]
- J. Schneeloch, P. B. Dixon, G. A. Howland, C. J. Broadbent, and J. C. Howell, “Violation of continuous-variable Einstein-Podolsky-Rosen steering with discrete measurements,” Phys. Rev. Lett.110, 130407 (2013). [CrossRef] [PubMed]
- L. Zhang, C. Silberhorn, and I. A. Walmsley, “Secure quantum key distribution using continuous variables of single photons,” Phys. Rev. Lett.100, 110504 (2008). [CrossRef] [PubMed]
- J. M. Renes and J.-C. Boileau, “Conjectured strong complementary information tradeoff,” Phys. Rev. Lett.103, 020402 (2009). [CrossRef] [PubMed]
- F. Grosshans and N. J. Cerf, “Continuous-variable quantum cryptography is secure against non-gaussian attacks,” Phys. Rev. Lett.92, 047905 (2004). [CrossRef] [PubMed]
- N. Beaudry, T. Moroder, and N. Lütkenhaus, “Squashing models for optical measurements in quantum communication,” Phys. Rev. Lett.101, 93601 (2008). [CrossRef]
- N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett.88, 127902 (2002). [CrossRef] [PubMed]
- C. K. Law, I. A. Walmsley, and J. H. Eberly, “Continuous frequency entanglement: effective finite hilbert space and entropy control,” Phys. Rev. Lett.84, 5304–5307 (2000). [CrossRef] [PubMed]
Proceedings of IEEE International Conference on Computers, Systems and Signal Processing
- C. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” Proceedings of IEEE International Conference on Computers, Systems and Signal Processing175–179 (1984).
Rev. Mod. Phys.
- N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74, 145–195 (2002). [CrossRef]
Rev. Sci. Instrum.
- S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, and T. Louis, “20-ps Timing resolution with single-photon avalanche diodes,” Rev. Sci. Instrum.60, 1104 (1989). [CrossRef]
Sankhyâ A
- M. Krishna and K. Parthasarathy, “An entropic uncertainty principle for quantum measurements,” Sankhyâ A842–851 (2002).
Transactions of the American Institute of Electrical Engineers
- G. Vernam, “Cipher printing telegraph systems for secret wire and radio telegraphic communications,” Transactions of the American Institute of Electrical Engineers45, 295–301 (1926). [CrossRef]
Other
- Since we do not treat finite size effects, the fraction is arbitrary, although realistically it should be large enough to suppress Poissonian errors on the estimation of error rates.
- J. Eberly, K. Chan, and C. Law, “Schmidt-mode analysis of entanglement for quantum information studies,” in “Quantum Communication and Information Technologies,” (Springer, 2003), pp. 1–12. [CrossRef]
- The assumption of a top-hat profile can be relaxed without changing our analysis, but the calculation in Appendix A would require numerics.
- Other phase modulation schemes such as four-wave mixing in waveguides [54] or sum-frequency generation in nonlinear crystals [51] could of course be used. Here we consider electro-optic phase modulation, which can be implemented with off-the-shelf telecoms components efficiently and with low loss.
- Eq. (27) in [71] corresponds to setting I= 0 with c→ 0, M→ Nand p→eBN.
- J. B. Spring, P. S. Salter, B. J. Metcalf, P. C. Humphreys, M. Moore, N. Thomas-Peter, M. Barbieri, X.-M. Jin, N. K. Langford, W. S. Kolthammer, M. J. Booth, and I. A. Walmsley, “On-chip low loss heralded source of pure single photons,” arXiv:1304.7781 (2013).
- G. Harder, V. Ansari, B. Brecht, T. Dirmeier, C. Marquardt, and C. Silberhorn, “An optimized photon pair source for quantum circuits,” arXiv:1304.6635 (2013).
- In general the key distillation will have non-unit efficiency βsuch that I= βIBA− IBE. However high efficiencies can be achieved, with β> 90%. Although the formulas are simplified by assuming β= 1, our security analysis can be trivially extended to cover the general case.
- J. Schneeloch, C. J. Broadbent, S. P. Walborn, E. G. Cavalcanti, and J. C. Howell, “EPR steering inequalities from entropic uncertainty relations,” arXiv:1303.7432 (2013).
- D. Tasca, L. Rudnicki, R. Gomes, F. Toscano, and S. Walborn, “Reliable entanglement detection under coarse-grained measurements,” arXiv:1210.5945 (2012).
- M. R. Ray and S. van Enk, “Missing data outside the detector range: application to continuous variable entanglement verification and quantum cryptography,” arXiv:1302.5087 (2013).
- S. Galbraith, Mathematics of public key cryptography (Cambridge University, 2012). [CrossRef]
- N. Gisin, G. Ribordy, H. Zbinden, D. Stucki, N. Brunner, and V. Scarani, “Towards practical and fast quantum cryptography,” arXiv:0411022 (2004).
- “MagiQ ( http://magiqtech.com ), ID Quantique ( www.idquantique.com ), QuintessenceLabs (qlabsusa.com), Toshiba ( http://www.toshiba-europe.com/research/crl/qig/quantumkeyserver.html ),”.
- D. Simon, N. Lawrence, J. Trevino, L. Negro, and A. Sergienko, “Quantum key distribution with Fibonacci orbital angular momentum states,” arXiv:1206.3548 (2012).
- D. Gauthier, H. Guilbert, Y. Zhu, M. Shi, K. McCusker, B. Christensen, P. Kwiat, T. Brougham, S. Barnett, and V. Chandar, “Quantum key distribution using hyperentanglement,” in “Quantum Information and Measurement,” (Optical Society of America, 2012).
- E. Saglamyurek, N. Sinclair, J. Jin, J. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Quantum memory for quantum repeaters,” in “International Quantum Electronics Conference,” (Optical Society of America, 2011).
- B. Qi, “Quantum key distribution based on frequency-time coding: security and feasibility,” arXiv:1101.5995 (2011).
- J. Mower, F. Wong, J. H. Shapiro, and D. Englund, “Dense wavelength division multiplexed quantum key distribution using entangled photons,” arXiv:1110.4867v1 (2011).
- A. Hayat, X. Xing, A. Feizpour, and A. M. Steinberg, “Multidimensional quantum information based on single-photon temporal wavepackets,” arXiv:1212.1483 (2012).
- P. Rohde, J. Fitzsimons, and A. Gilchrist, “The information capacity of a single photon,” arXiv:1211.1427 (2012).
- J. Mower, Z. Zhang, P. Desjardins, C. Lee, J. H. Shapiro, and D. Englund, “High-dimensional quantum key distribution using dispersive optics,” arXiv:1210.4501 (2012).
2013, Marsili, Nat. Photonics
- F. Marsili, V. Verma, J. Stern, S. Harrington, A. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. Shaw, R. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics7, 210–214 (2013). [CrossRef]
- J. Schneeloch, C. J. Broadbent, S. P. Walborn, E. G. Cavalcanti, and J. C. Howell, “EPR steering inequalities from entropic uncertainty relations,” arXiv:1303.7432 (2013).
- J. Schneeloch, P. B. Dixon, G. A. Howland, C. J. Broadbent, and J. C. Howell, “Violation of continuous-variable Einstein-Podolsky-Rosen steering with discrete measurements,” Phys. Rev. Lett.110, 130407 (2013). [CrossRef] [PubMed]
- J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photonics7363–366 (2013). [CrossRef]
- Ł. Rudnicki, S. Walborn, and F. Toscano, “Optimal uncertainty relations for extremely coarse-grained measurements,” Phys. Rev. A85, 042115 (2012). [CrossRef]
- E. Martin-Lopez, A. Laing, T. Lawson, R. Alvarez, X.-Q. Zhou, and J. L. O’Brien, “Experimental realization of Shor’s quantum factoring algorithm using qubit recycling,” Nat. Photonics6, 773–776 (2012). [CrossRef]
- S. Braunstein and S. Pirandola, “Side-channel-free quantum key distribution,” Phys. Rev. Lett.108, 130502 (2012). [CrossRef] [PubMed]
- H. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett.108, 130503 (2012). [CrossRef] [PubMed]
- A. Datta, L. Zhang, N. Thomas-Peter, U. Dorner, B. J. Smith, and I. A. Walmsley, “Quantum metrology with imperfect states and detectors,” Phys. Rev. A83, 063836 (2011). [CrossRef]
- Z. Chang-Hua, P. Chang-Xing, Q. Dong-Xiao, G. Jing-Liang, C. Nan, and Y. Yun-Hui, “A new quantum key distribution scheme based on frequency and time coding,” Chin. Phys. Lett.27, 090301 (2010). [CrossRef]
- L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar, J.-M. Merolla, and K. P. Huy, “Frequency-bin entangled photons,” Phys. Rev. A82, 013804 (2010). [CrossRef]
- O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett.102, 123603 (2009). [CrossRef] [PubMed]
- G. Brida, V. Caricato, M. Fedorov, M. Genovese, M. Gramegna, and S. Kulik, “Characterization of spectral entanglement of spontaneous parametric-down conversion biphotons in femtosecond pulsed regime,” Europhys. Lett.87, 64003 (2009). [CrossRef]
- J. H. Shapiro, “Defeating passive eavesdropping with quantum illumination,” Phys. Rev. A80, 022320 (2009). [CrossRef]
- J. M. Renes and J.-C. Boileau, “Conjectured strong complementary information tradeoff,” Phys. Rev. Lett.103, 020402 (2009). [CrossRef] [PubMed]
- R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics3, 696–705 (2009). [CrossRef]
- L. Zhang, L. Neves, J. S. Lundeen, and I. A. Walmsley, “A characterization of the single-photon sensitivity of an electron multiplying charge-coupled device,” J. Phys. B42, 114011 (2009). [CrossRef]
- P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett.100, 133601 (2008). [CrossRef] [PubMed]
- N. Beaudry, T. Moroder, and N. Lütkenhaus, “Squashing models for optical measurements in quantum communication,” Phys. Rev. Lett.101, 93601 (2008). [CrossRef]
- L. Zhang, C. Silberhorn, and I. A. Walmsley, “Secure quantum key distribution using continuous variables of single photons,” Phys. Rev. Lett.100, 110504 (2008). [CrossRef] [PubMed]
- H. Takesue, S. Nam, Q. Zhang, R. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-db channel loss using superconducting single-photon detectors,” Nat. Photonics1, 343–348 (2007). [CrossRef]
- R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Oemer, M. Fuerst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Free-space distribution of entanglement and single photons over 144 km,” Nature Phys.3, 481 (2007). [CrossRef]
- B. P. Lanyon, T. J. Weinhold, N. K. Langford, M. Barbieri, D. F. V. James, A. Gilchrist, and A. G. White, “Experimental demonstration of a compiled version of Shor’s algorithm with quantum entanglement,” Phys. Rev. Lett.99, 250505 (2007). [CrossRef]
- I. Ali-Khan, C. J. Broadbent, and J. C. Howell, “Large-alphabet quantum key distribution using energy-time entangled bipartite states,” Phys. Rev. Lett.98, 060503 (2007). [CrossRef] [PubMed]
- L. Zhang, A. B. U’ren, R. Erdmann, K. O’Donnell, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Generation of highly entangled photon pairs for continuous variable Bell inequality violation,” J. Mod. Opt.54, 707–719 (2007). [CrossRef]
- W. Wasilewski, A. I. Lvovsky, K. Banaszek, and C. Radzewicz, “Pulsed squeezed light: simultaneous squeezing of multiple modes,” Phys. Rev. A73, 063819 (2006). [CrossRef]
- I. Ali-Khan and J. C. Howell, “Experimental demonstration of high two-photon time-energy entanglement,” Phys. Rev. A73, 031801 (2006). [CrossRef]
- F. Grosshans and N. J. Cerf, “Continuous-variable quantum cryptography is secure against non-gaussian attacks,” Phys. Rev. Lett.92, 047905 (2004). [CrossRef] [PubMed]
- J. Azaña, “Time-to-frequency conversion using a single time lens,” Opt. Commun.217, 205–209 (2003). [CrossRef]
- M. Krishna and K. Parthasarathy, “An entropic uncertainty principle for quantum measurements,” Sankhyâ A842–851 (2002).
- N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74, 145–195 (2002). [CrossRef]
- M. Bourennane, A. Karlsson, G. Björk, N. Gisin, and N. Cerf, “Quantum key distribution using multilevel encoding: security analysis,” J. Phys. A35, 10065 (2002). [CrossRef]
- N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett.88, 127902 (2002). [CrossRef] [PubMed]
- L. Duan, M. Lukin, J. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature414, 413–418 (2001). [CrossRef] [PubMed]
- W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A64, 063815 (2001). [CrossRef]
- C. K. Law, I. A. Walmsley, and J. H. Eberly, “Continuous frequency entanglement: effective finite hilbert space and entropy control,” Phys. Rev. Lett.84, 5304–5307 (2000). [CrossRef] [PubMed]
- W. P. Grice, R. Erdmann, I. A. Walmsley, and D. Branning, “Spectral distinguishability in ultrafast parametric down-conversion,” Phys. Rev. A57, R2289–R2292 (1998). [CrossRef]
- W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A56, 1627–1634 (1997). [CrossRef]
- P. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” Appl. Math. J. Comp26, 1484–1509 (1997).
- A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, ““Plug and play” systems for quantum cryptography,” Appl. Phys. Lett.70, 793–795 (1997). [CrossRef]
- B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron.30, 1951–1963 (1994). [CrossRef]
- M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett.64, 270–272 (1994). [CrossRef]
- A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett.67, 661–663 (1991). [CrossRef] [PubMed]
- S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, and T. Louis, “20-ps Timing resolution with single-photon avalanche diodes,” Rev. Sci. Instrum.60, 1104 (1989). [CrossRef]
- C. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” Proceedings of IEEE International Conference on Computers, Systems and Signal Processing175–179 (1984).
- D. Payne and W. Gambling, “New silica-based low-loss optical fibre,” Electron. Lett.10, 289–290 (1974). [CrossRef]
- G. Vernam, “Cipher printing telegraph systems for secret wire and radio telegraphic communications,” Transactions of the American Institute of Electrical Engineers45, 295–301 (1926). [CrossRef]
Cited By |
Alert me when this paper is cited |
OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.
Related Journal Articles
- Flattop tunable dense-wavelength division-multiplexing filter-modulator (JOSAB)
- Correlations between optimal temporal width and spectral characteristics of an optical signal in a wavelength-paired CS-RZ transmission with high spectral efficiency (OE)
- Performance comparison of optical 8-ary differential phase-shift keying systems with different electrical decision schemes (OE)
- In-band 16-QAM and multi-carrier SCM modulation to label DPSK payload signals for IP packet routing (OE)
- Orthogonal frequency division multiplexing for high-speed optical transmission (OE)
Related Conference Papers
- Monolithically integrated balanced photodetector and its application in OTDM 160 Gbitls DPSK transmission
- Cascaded LiNbO3 modulators for ultrafast demultiplexing
- 8x450-Gb/s,50-GHz-Spaced,PDM-32QAM transmission over 400km and one 50GHz-grid ROADM
- 8x450-Gb/s,50-GHz-Spaced,PDM-32QAM transmission over 400km and one 50GHz-grid ROADM
- Design of Synchronous “Plug & Play” QKD-WDM-PON for Efficient Quantum Communications
« Previous Article | Next Article »
OSA is a member of CrossRef.
- Firefox 11+
- Google Chrome 17+
- Internet Explorer 9+
- Safari 5+