OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 16029–16034

Compact low loss and broadband hybrid plasmonic directional coupler

M. Z. Alam, J. Niklas Caspers, J. S. Aitchison, and M. Mojahedi  »View Author Affiliations

Optics Express, Vol. 21, Issue 13, pp. 16029-16034 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1371 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a novel broadband coupler for silicon photonics using a hybrid plasmonic waveguide section. The hybrid plasmonic waveguide is used to create an asymmetric section in the middle of a silicon nanowire waveguide coupler to introduce a phase delay to allow for a 3-dB power coupling ratio over a 150 nm bandwidth around 1.55 µm. The device is very compact (<8.5 µm) and has a low insertion loss (<0.15 dB).

© 2013 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Integrated Optics

Original Manuscript: April 11, 2013
Revised Manuscript: June 11, 2013
Manuscript Accepted: June 13, 2013
Published: June 27, 2013

M. Z. Alam, J. Niklas Caspers, J. S. Aitchison, and M. Mojahedi, "Compact low loss and broadband hybrid plasmonic directional coupler," Opt. Express 21, 16029-16034 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Davanço, P. Holmström, D. J. Blumenthal, and L. Thylén, “Directional coupler wavelength filters based on waveguides exhibiting electromagnetically induced transparency,” IEEE J. Quantum Electron.39(4), 608–613 (2003). [CrossRef]
  2. C. K. Kirendall and A. Dandridge, “Overview of high performance fiber-optic sensing,” J. Phys. D: All. Phys.37(18), R197–R216 (2004). [CrossRef]
  3. F. Aurzada, M. Scheutzow, M. Reisslein, N. Ghazisaidi, and M. Maier, “Capacity and delay analysis of next-generation passive optical networks (NG-PONs),” IEEE Trans. Commun.59(5), 1378–1388 (2011). [CrossRef]
  4. A. Takagi, K. Jinguji, and M. Kawachi, “Design and fabrication of broad-band silica-based optical waveguide couplers with asymmetric structure,” IEEE J. Quantum Electron.28(4), 848–855 (1992). [CrossRef]
  5. L. Cao, A. Elshaari, A. Aboketaf, and S. Preble, “Adiabatic couplers in SOI waveguides,” CLEO, paper CThAA2 (2011).
  6. R. Halir, A. M. Novo, A. O. Monux, M. Fernandez, J. G. W. Perez, P. Cheben, D. X. Xu, J. H. Schmid, and S. Janz, “Colorless directional coupler with dispersion engineered sib-wavelength structure,” Opt. Express20, 13470–13477 (2012).
  7. S.-H. Hsu, “Signal power tapped with low polarization dependence and insensitive wavelength on silicon-on-insulator platforms,” JOSA B.27(5), 941–947 (2010). [CrossRef]
  8. A. Takagi, K. Jinguji, and M. Kawachi, “Design and fabrication of broad-band silica-based optical waveguide couplers with asymetric structure,” IEEE J. Quantum Electron.28(4), 848–855 (1992). [CrossRef]
  9. B. Chen, H. Lu, D. Zhao, Y. Yuan, and M. Iso, “Optimized design of polarization-independent and temperature-insensitive broadband optical waveguide coupler by use of fluorinated polyimide,” Appl. Opt.42(20), 4196–4201 (2003). [CrossRef] [PubMed]
  10. M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Supermode propagation in low index medium,” CLEO (2007) paper JThD112 (2007).
  11. M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express18(12), 12971–12979 (2010). [CrossRef] [PubMed]
  12. D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express17(19), 16646–16653 (2009). [CrossRef] [PubMed]
  13. P. D. Flammer, J. M. Banks, T. E. Furtak, C. G. Durfee, R. E. Hollingsworth, and R. T. Collins, “Hybrid plasmon/dielectric waveguide for integrated silicon-on-insulator optical elements,” Opt. Express18(20), 21013–21023 (2010). [CrossRef] [PubMed]
  14. X. Sun, M. Z. Alam, S. J. Wagner, J. S. Aitchison, and M. Mojahedi, “Experimental demonstration of a hybrid plasmonic TE-pass polarizer for silicon-on-insulator platform,” Opt. Lett.37, 4814–4816 (2012). [CrossRef] [PubMed]
  15. J. N. Caspers, M. Z. Alam, and M. Mojahedi, “Compact hybrid plasmonic polarization rotator,” Opt. Lett.37(22), 4615–4616 (2012). [CrossRef] [PubMed]
  16. F. F. Lu, T. Li, X. P. Hu, Q. Q. Cheng, S. N. Zhu, and Y. Y. Zhu, “Efficient second-harmonic generation in nonlinear plasmonic waveguide,” Opt. Lett.36(17), 3371–3373 (2011). [CrossRef] [PubMed]
  17. J. Wang, X. Guan, Y. He, Y. Shi, Z. Wang, S. He, P. Holmström, L. Wosinski, L. Thylen, and D. Dai, “Sub-μm2 power splitters by using silicon hybrid plasmonic waveguides,” Opt. Express19(2), 838–847 (2011). [CrossRef] [PubMed]
  18. H.-S. Chu, Y. A. Akimov, P. Bai, and E.-P. Li, “Hybrid dielectric-loaded plasmonic waveguide and wavelength selective components for efficiently controlling light at subwavelength scale,” J. Opt. Soc. Am. B28 (12), 2895–2901 (2011). [CrossRef]
  19. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 2007).
  20. E. D. Palik, Handbook of optical constants of solids, (Academic Press, Inc. 1985).
  21. P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  22. FDTD Solutions Reference Guide, (Lumerical Solutions, 2012).
  23. G. V. Eleftheriades, A. S. Omar, L. P. B. Katehi, and G. M. Rebeiz, “Some important properties of waveguide junction generalized scattering matrices in the context of the mode matching technique,” IEEE Trans. Microw. Theory Tech.42(10), 1896–1903 (1994). [CrossRef]
  24. V. M. N. Passaro, F. Dell’Olio, B. Timotijevic, G. Z. Mashanovich, and G. T. Reed, “Polarization-insensitive directional couplers based on SOI wire waveguides,” The Open Optics Journal2(1), 6–9 (2007). [CrossRef]
  25. http://www.nanofab.ualberta.ca/wp-content/uploads/2009/03/pecvd_process_control.pdf

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited