OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 16075–16085

Flip-chip optical couplers with scalable I/O count for silicon photonics

Ibrahim Murat Soganci, Antonio La Porta, and Bert Jan Offrein  »View Author Affiliations


Optics Express, Vol. 21, Issue 13, pp. 16075-16085 (2013)
http://dx.doi.org/10.1364/OE.21.016075


View Full Text Article

Enhanced HTML    Acrobat PDF (3775 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A scalable and tolerant optical interfacing method based on flip-chip bonding is developed for silicon photonics packaging. Bidirectional optical couplers between multiple silicon-on-insulator waveguides and single-mode polymer waveguides are designed and fabricated. Successful operation is verified experimentally in the 1530-1570 nm spectral window. At the wavelength of 1570 nm, the coupling loss is as low as 0.8 dB for both polarization states and the planar misalignment loss is less than 0.6 dB for TE and 0.3 dB for TM polarization in a lateral silicon-polymer waveguide offset range of ± 2 µm. The coupling loss does not exhibit any temperature dependence up to the highest measurement point of 70°C.

© 2013 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.5460) Integrated optics : Polymer waveguides

ToC Category:
Integrated Optics

History
Original Manuscript: May 20, 2013
Revised Manuscript: June 15, 2013
Manuscript Accepted: June 16, 2013
Published: June 27, 2013

Citation
Ibrahim Murat Soganci, Antonio La Porta, and Bert Jan Offrein, "Flip-chip optical couplers with scalable I/O count for silicon photonics," Opt. Express 21, 16075-16085 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-13-16075


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µm square Si wire waveguides to single mode fibres,” Electron. Lett.38(25), 1669–1670 (2002). [CrossRef]
  2. A. Sure, T. Dillon, J. Murakowski, C. Lin, D. Pustai, and D. W. Prather, “Fabrication and characterization of three-dimensional silicon tapers,” Opt. Express11(26), 3555–3561 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?id=78219 . [CrossRef] [PubMed]
  3. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett.28(15), 1302–1304 (2003). [CrossRef] [PubMed]
  4. S. J. McNab, N. Moll, and Y. A. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express11(22), 2927–2939 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-11-22-2927 . [CrossRef] [PubMed]
  5. D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett.29(23), 2749–2751 (2004). [CrossRef] [PubMed]
  6. G. Roelkens, P. Dumon, W. Bogaerts, D. Van Thourhout, and R. Baets, “Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-deep UV lithography,” IEEE Photon. Technol. Lett.17(12), 2613–2615 (2005). [CrossRef]
  7. G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay,” Opt. Express14(24), 11622–11630 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?id=119162 . [CrossRef] [PubMed]
  8. K. Shiraishi, H. Yoda, A. Ohshima, H. Ikedo, and C. S. Tsai, “A silicon-based spot-size converter between single-mode fibers and Si-wire waveguides using cascaded tapers,” Appl. Phys. Lett.91(14), 141120 (2007). [CrossRef]
  9. Y. Liu, Y. Li, Z. Fan, B. Xing, Y. Yu, and J. Yu, “Fabrication and optical optimization of spot-size converters with strong cladding layers,” J. Opt. A, Pure Appl. Opt.11(8), 085002 (2009). [CrossRef]
  10. A. Khilo, M. A. Popović, M. Araghchini, and F. X. Kärtner, “Efficient planar fiber-to-chip coupler based on two-stage adiabatic evolution,” Opt. Express18(15), 15790–15806 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-15-15790 . [CrossRef] [PubMed]
  11. B. Ben Bakir, A. Vasquez de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-loss (<1dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photon. Technol. Lett.22(11), 739–741 (2010). [CrossRef]
  12. C. Kopp, S. Bernabé, B. B. Bakir, J. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron.17(3), 498–509 (2011). [CrossRef]
  13. R. Takei, E. Omoda, M. Suzuki, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Ultranarrow silicon inverse taper waveguide fabricated with double-patterning photolithography for low-loss spot-size converter,” Appl. Phys. Express5(5), 052202 (2012). [CrossRef]
  14. M. A. Taubenblatt, “Optical interconnects for high-performance computing,” J. Lightwave Technol.30(4), 448–457 (2012). [CrossRef]
  15. P. W. Coteus, J. U. Knickerbocker, C. H. Lam, and Y. A. Vlasov, “Technologies for exascale systems,” IBM J. Res. Develop.55(5), 141–1412 (2011). [CrossRef]
  16. B. J. Offrein, C. Berger, R. Beyeler, R. Dangel, L. Dellmann, F. Horst, T. Lamprecht, N. Meier, R. Budd, F. Libsch, and J. Kash, “Parallel optical interconnects in printed circuit boards,” Proc. SPIE5990, 59900E, 59900E-9 (2005). [CrossRef]
  17. S. Uhlig, L. Fröhlich, M. Chen, N. Arndt-Staufenbiel, G. Lang, H. Schröder, R. Houbertz, M. Popall, and M. Robertsson, “Polymer optical interconnects – a scalable large-area panel processing approach,” IEEE Trans. Adv. Packag.29(1), 158–170 (2006). [CrossRef]
  18. R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag.31(4), 759–767 (2008). [CrossRef]
  19. F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using CMOS-based transceivers,” IEEE Trans. Adv. Packag.32(2), 345–359 (2009). [CrossRef]
  20. F. Horst, “Combining Si-photonics and optical PCB’s,” LEOS Annual Meeting Conference Proceedings, 2009. LEOS '09. IEEE, pp.14–15, 4–8 Oct. 2009.
  21. A. Yariv, Quantum Electronics, Third Edition (Wiley, 1989), Chap. 22.
  22. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983), Chap. 19, 28.
  23. A. Yariv and X. Sun, “Supermode Si/III-V hybrid lasers, optical amplifiers and modulators: a proposal and analysis,” Opt. Express15(15), 9147–9151 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-15-9147 . [CrossRef] [PubMed]
  24. R. Zengerle, H. Bruckner, H. Olzhausen, and A. Kohl, “Low-loss fibre-chip coupling by buried laterally tapered InP/InGaAsP waveguide structure,” Electron. Lett.28(7), 631–632 (1992). [CrossRef]
  25. F. Xia, J. K. Thomson, M. R. Gokhale, P. V. Studenkov, J. Wei, W. Lin, and S. R. Forrest, “An asymmetric twin-waveguide high-bandwidth photodiode using a lateral taper coupler,” IEEE Photon. Technol. Lett.13(8), 845–847 (2001). [CrossRef]
  26. V. M. Menon, F. Xia, and S. R. Forrest, “Photonic integration using asymmetric twin-waveguide (ATG) technology: part II - devices,” IEEE J. Sel. Top. Quantum Electron.11(1), 30–42 (2005). [CrossRef]
  27. L. Hou, Z. Ren, Y. Shu, and S. Yu, “Angle-facet spot-size-converter integrated semiconductor optical amplifiers using asymmetric twin waveguide technology,” IEEE Photon. Technol. Lett.20(8), 563–565 (2008). [CrossRef]
  28. J. Shu, C. Qiu, X. Zhang, and Q. Xu, “Efficient coupler between chip-level and board-level optical waveguides,” Opt. Lett.36(18), 3614–3616 (2011). [CrossRef] [PubMed]
  29. X. Sun, H.-C. Liu, and A. Yariv, “Adiabaticity criterion and the shortest adiabatic mode transformer in a coupled-waveguide system,” Opt. Lett.34(3), 280–282 (2009). [CrossRef] [PubMed]
  30. R. Buestrich, F. Kahlenberg, M. Popall, P. Dannberg, R. Müller-Fiedler, and O. Rösch, “ORMOCER®s for optical interconnection technology,” J. Sol-Gel Sci. Technol.20(2), 181–186 (2001). [CrossRef]
  31. U. Streppel, P. Dannberg, C. Waechter, A. Braeuer, P. Nicole, L. Froehlich, R. Houbertz, and M. Popall, “Development of a new fabrication method for stacked optical waveguides using inorganic-organic copolymers,” in First Int. IEEE Conf. on Polymers and Adhesives in Microelectronics and Photonics, Potsdam, Germany, 2001, pp. 329–335. [CrossRef]
  32. B. Mersali, H. J. Bruckner, M. Feuillade, S. Sainson, A. Ougazzaden, and A. Carenco, “Theoretical and experimental studies of a spot-size transformer with integrated waveguide for polarization insensitive optical amplifiers,” J. Lightwave Technol.13(9), 1865–1872 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited