OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 14 — Jul. 15, 2013
  • pp: 16311–16318

Integrated temperature sensor based on an enhanced pyroelectric photonic crystal

Huihui Lu, Benattou Sadani, Gwenn Ulliac, Clement Guyot, Nadège Courjal, Manuel Collet, Fadi Issam Baida, and Maria-Pilar Bernal  »View Author Affiliations

Optics Express, Vol. 21, Issue 14, pp. 16311-16318 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1837 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, temperature variations are detected thanks to an enhanced nano-optical pyroelectric sensor. Sensing is obtained with the pyroelectric effect of lithium niobate (LN) in which, a suitable air-membrane photonic crystal cavity has been fabricated. The wavelength position of the cavity mode is tuned 11.5 nm for a temperature variation of only 32 °C. These results agree quite well with 3D-FDTD simulations that predict tunability of 12.5 nm for 32 °C. This photonic crystal temperature sensor shows a sensitivity of 0.359 nm/°C for an active length of only ~5.2 μm.

© 2013 OSA

OCIS Codes
(130.0250) Integrated optics : Optoelectronics
(130.3730) Integrated optics : Lithium niobate
(250.5300) Optoelectronics : Photonic integrated circuits
(130.3990) Integrated optics : Micro-optical devices

ToC Category:
Integrated Optics

Original Manuscript: June 10, 2013
Revised Manuscript: June 24, 2013
Manuscript Accepted: June 25, 2013
Published: July 1, 2013

Huihui Lu, Benattou Sadani, Gwenn Ulliac, Clement Guyot, Nadège Courjal, Manuel Collet, Fadi Issam Baida, and Maria-Pilar Bernal, "Integrated temperature sensor based on an enhanced pyroelectric photonic crystal," Opt. Express 21, 16311-16318 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Zrenner, “Artificial vision: Solar cells for the blind,” Nat. Photonics6(6), 344–345 (2012). [CrossRef]
  2. M. V. Romalis, “Atomic sensors: Chip-scale magnetometers,” Nat. Photonics1(11), 613–614 (2007). [CrossRef]
  3. P. W. Barone, S. Baik, D. A. Heller, and M. S. Strano, “Near-infrared optical sensors based on single-walled carbon nanotubes,” Nat. Mater.4(1), 86–92 (2005). [CrossRef] [PubMed]
  4. J.-L. Kou, S.-J. Qiu, F. Xu, and Y.-Q. Lu, “Demonstration of a compact temperature sensor based on first-order Bragg grating in a tapered fiber probe,” Opt. Express19(19), 18452–18457 (2011). [CrossRef] [PubMed]
  5. M. Chomát, J. Čtyroký, D. Berková, V. Matějec, J. Kaňka, J. Skokánková, F. Todorov, A. Jančárek, and P. Bittner, “Temperature sensitivity of long-period gratings inscribed with a CO2 laser in optical fiber with graded-index cladding,” Sens. Actuators B Chem.119(2), 642–650 (2006). [CrossRef]
  6. Y. Liu, B. Liu, X. Feng, W. Zhang, G. Zhou, S. Yuan, G. Kai, and X. Dong, “High-birefringence fiber loop mirrors and their applications as sensors,” Appl. Opt.44(12), 2382–2390 (2005). [CrossRef] [PubMed]
  7. W. Qian, C.-L. Zhao, S. He, X. Dong, S. Zhang, Z. Zhang, S. Jin, J. Guo, and H. Wei, “High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror,” Opt. Lett.36(9), 1548–1550 (2011). [CrossRef] [PubMed]
  8. X. Zhang and X. Li, “Design, fabrication and characterization of optical microring sensors on metal substrates,” J. Micromech. Microeng.18(1), 015025 (2008). [CrossRef]
  9. H. S. Lee, G. D. Kim, and S. S. Lee, “Temperature compensated glucose sensor exploiting ring resonators,” IEEE Photon. Technol. Lett.21(16), 1136 (2009). [CrossRef]
  10. G.-D. Kim, H.-S. Lee, C. H. Park, S.-S. Lee, B. T. Lim, H. K. Bae, and W.-G. Lee, “Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process,” Opt. Express18(21), 22215–22221 (2010). [CrossRef] [PubMed]
  11. T. Srivastava, R. Das, and R. Jha, “Highly Sensitive Plasmonic Temperature Sensor Based on Photonic Crystal Surface Plasmon Waveguide,” Plasmonics8(2), 515–521 (2013). [CrossRef]
  12. R. W. Whatmore, “Pyroelectric devices and materials,” Rep. Prog. Phys.49(12), 1335–1386 (1986). [CrossRef]
  13. H. Lu, B. Sadani, G. Ulliac, N. Courjal, C. Guyot, J.-M. Merolla, M. Collet, F. I. Baida, and M.-P. Bernal, “6-micron interaction length electro-optic modulation based on lithium niobate photonic crystal cavity,” Opt. Express20(19), 20884–20893 (2012). [CrossRef] [PubMed]
  14. H. Lu, B. Sadani, N. Courjal, G. Ulliac, N. Smith, V. Stenger, M. Collet, F. I. Baida, and M.-P. Bernal, “Enhanced electro-optical lithium niobate photonic crystal wire waveguide on a smart-cut thin film,” Opt. Express20(3), 2974–2981 (2012). [CrossRef] [PubMed]
  15. H. Lu, B. Sadani, G. Ulliac, N. Courjal, C. Guyot, M. Collet, F. I. Baida, and M.-P. Bernal, “Lithium niobate photonic crystal wire cavity: Realization of a compact electro-optically tunable filter,” Appl. Phys. Lett.101(15), 151117 (2012). [CrossRef]
  16. J. D. Brownridge, “Pyroelectric X-ray generator,” Nature358(6384), 287–288 (1992). [CrossRef] [PubMed]
  17. M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett.89(24), 241110 (2006). [CrossRef]
  18. N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett.96(13), 131103 (2010). [CrossRef]
  19. J. Amet, G. Ulliac, F. I. Baida, and M.-P. Bernal, “Experimental evidence of enhanced electro-optic control on a lithium niobate photonic crystal superprism,” Appl. Phys. Lett.96(10), 103111 (2010). [CrossRef]
  20. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl'innocenti, and P. Günter, “Electro–optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
  21. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438(7064), 65–69 (2005). [CrossRef] [PubMed]
  22. S. J. McNab, N. Moll, and Y. A. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express11(22), 2927–2939 (2003). [CrossRef] [PubMed]
  23. E. Dulkeith, S. J. McNab, and Y. A. Vlasov, “Mapping the optical properties of slab-type two-dimensional photonic crystal waveguides,” Phys. Rev. B72(11), 115102 (2005). [CrossRef]
  24. G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser & Photon. Rev.6(4), 488–503 (2012). [CrossRef]
  25. G. Si, E. J. Teo, A. A. Bettiol, J. Teng, and A. J. Danner, “Suspended slab and photonic crystal waveguides in lithium niobate,” J. Vac. Sci. Technol. B28(2), 316 (2010). [CrossRef]
  26. R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Januts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett.97(13), 131109 (2010). [CrossRef]
  27. H. Hartung, E.-B. Kley, T. Gischkat, F. Schrempel, W. Wesch, and A. Tünnermann, “Ultra thin high index contrast photonic crystal slabs in lithium niobate,” Opt. Mater.33(1), 19–21 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited