OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 14 — Jul. 15, 2013
  • pp: 16319–16330

Quantitative allocation of Bragg scattering effects in highly efficient OLEDs fabricated on periodically corrugated substrates

C. Fuchs, T. Schwab, T. Roch, S. Eckardt, A. Lasagni, S. Hofmann, B. Lüssem, L. Müller-Meskamp, K. Leo, M. C. Gather, and R. Scholz  »View Author Affiliations

Optics Express, Vol. 21, Issue 14, pp. 16319-16330 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (23680 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Bragg scattering effects in bottom-emitting organic light-emitting diodes (OLEDs) grown on corrugated aluminum-doped zinc oxide electrodes are analyzed. Periodic corrugation is introduced by structuring the oxide electrode via UV laser ablation, a process that enables flexible adjustment of the period and height of corrugation. We demonstrate that fabrication of stable and electrically efficient OLEDs on these rough substrates is feasible. Sharp spectral features are superimposed onto the broad emission spectra of the OLEDs, providing clear evidence for Bragg scattering of light from guided modes into the air cone. Theoretical analysis based on an emissive dipole model and conservation of momentum considerations allows a quantitative description of scattering and the associated dispersion relations.

© 2013 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(160.4890) Materials : Organic materials
(230.3670) Optical devices : Light-emitting diodes
(230.4000) Optical devices : Microstructure fabrication

ToC Category:
Optical Devices

Original Manuscript: January 22, 2013
Revised Manuscript: April 18, 2013
Manuscript Accepted: April 22, 2013
Published: July 2, 2013

C. Fuchs, T. Schwab, T. Roch, S. Eckardt, A. Lasagni, S. Hofmann, B. Lüssem, L. Müller-Meskamp, K. Leo, M. C. Gather, and R. Scholz, "Quantitative allocation of Bragg scattering effects in highly efficient OLEDs fabricated on periodically corrugated substrates," Opt. Express 21, 16319-16330 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. K. Patel, S. Cinà, and J. H. Burroughes, “High-efficiency organic light-emitting diodes,” IEEE J. Sel. Top. Quant. Electron.8, 346–361 (2002). [CrossRef]
  2. M. Furno, R. Meerheim, S. Hofmann, B. Lüssem, and K. Leo, “Efficiency and rate of spontaneous emission in organic electroluminescent devices,” Phys. Rev. B85, 115–205 (2012). [CrossRef]
  3. C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, “Nearly 100% internal phosphorescence efficiency in an organic light-emitting device,” J. Appl. Phys.90, 5048 (2001). [CrossRef]
  4. M.-H. Lu and J. C. Sturm, “Optimization of external coupling and light emission in organic light-emitting devices: modeling and experiment,” J. Appl. Phys.91, 595–604 (2002). [CrossRef]
  5. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with flourescent tube efficiency,” Nature459, 234–238 (2009). [CrossRef] [PubMed]
  6. B. J. Scholz, J. Frischeisen, A. Jaeger, D. S. Setz, T. C. G. Reusch, and W. Brütting, “Extraction of surface plasmons in organic light-emitting diodes via high-index coupling,” Opt. Express20, A205–A212 (2012). [CrossRef] [PubMed]
  7. M. Thomschke, S. Reineke, B. Lüssem, and K. Leo, “Highly efficient white top-emitting organic light-emitting diodes comprising laminated microlens films,” Nano Lett.12, 424–428 (2012). [CrossRef]
  8. J. Choi, T.-W. Koh, S. Lee, and S. Yoo, “Enhanced light extraction in organic light-emitting devices: Using conductive low-index layers and micropatterned indium tin oxide electrodes with optimal taper angle,” Appl. Phys. Lett.100, 233303 (2012). [CrossRef]
  9. B. J. Matterson, J. M. Lupton, A. F. Safonov, M. G. Salt, W. L. Barnes, and I. D. W. Samuel, “Increased efficiency and controlled light output from a microstructured light-emitting diode,” Adv. Mater.13, 123–128 (2001). [CrossRef]
  10. M. Fujita, K. Ishihara, T. Ueno, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Optical and electrical characteristics of organic light-emitting diodes with two-dimensional photonic crystals in organic/electrode layers,” Jpn. J. Appl. Phys.44, 3669–3677 (2005). [CrossRef]
  11. S.-Y. Nien, N.-F. Chiu, Y.-H. Ho, J.-H. L., and C.-W. Lin, “Directional photoluminescence enhancement of organic emitters via surface plasmon coupling,” Appl. Phys. Lett.94, 103304 (2009). [CrossRef]
  12. Y. Bai, J. Feng, Y.-F. Liu, J.-F. Song, J. Simonen, Y. Jin, Q.-D. Chen, J. Zi, and H.-B. Sun, “Outcoupling of trapped optical modes in organic light emitting devices with one-step fabricated periodic corrugation by laser ablation,” Org. Electron.12, 1927–1935 (2011). [CrossRef]
  13. J. Frischeisen, Q. Niu, A. Abdellah, J. B. Kinzel, R. Gehlhaar, G. Scarpa, C. Adachi, P. Lugli, and W. Brütting, “Light extraction from surface plasmons and waveguide modes in an organic light-emitting layer by nanoim-printed gratings,” Opt. Express19, A7–A19 (2011). [CrossRef] [PubMed]
  14. D. P. Puzzo, M. G. Helander, P. G. O’Brien, Z. Wang, N. Soheilnia, N. Kherani, Z. Lu, and G. A. Ozin, “Organic light-emitting diode microcavities from transparent conducting metal oxide photonic crystals,” Nano Lett.11, 1457–1462 (2011). [CrossRef] [PubMed]
  15. T. Bocksrocker, J. B. Preinfalk, J. Asche-Tauscher, A. Pargner, C. Eschenbaum, F. Maier-Flaig, and U. Lemmer, “White organic light emitting diodes with enhanced internal and external outcoupling for ultra-efficient light extraction and lambertian emission,” Opt. Express20, A932–A940 (2012). [CrossRef] [PubMed]
  16. Y.-G. Bi, J. Feng, Y.-F. Li, Y. Jin, and Y.-F. Liu, “Enhanced efficiency of organic light-emitting devices with metallic electrodes by integrating periodically corrugated structures,” Appl. Phys. Lett.100, 053304 (2012). [CrossRef]
  17. F. Liu and J.-M. Nunzi, “Phosphorescent organic light emitting diode efficiency enhancement using functionalized silver nanoparticles,” Appl. Phys. Lett.99, 123302 (2011). [CrossRef]
  18. H. J. Peng, Y. L. Ho, X. J. Yu, and H. S. Kwok, “Enhanced coupling of light from organic light emitting diodes using nanoporous films,” J. Appl. Phys.96, 1649 (2004). [CrossRef]
  19. S.-Y. Hsu, M.-C. Lee, K.-L. Lee, and P.-K. Wei, “Extraction enhancement in organic light emitting devices by using metallic nanowire arrays,” Appl. Phys. Lett.92, 013303 (2008). [CrossRef]
  20. M. G. Salt and W. L. Barnes, “Flat photonic bands in guided modes of textured metallic microcavities,” Phys. Rev. B61, 11125–11135 (2000). [CrossRef]
  21. S. Wedge and W. L. Barnes, “Surface plasmon-polariton mediated light emission through thin metal films,” Opt. Express12, 3673–3685 (2004). [CrossRef] [PubMed]
  22. C. Kluge, M. Rädler, A. Pradana, M. Bremer, P.-J. Jakobs, N. Barié, M. Guttmann, and M. Gerken, “Extraction of guided modes from organic emission layers by compound binary gratings,” Opt. Lett.37, 2646–2648 (2012). [CrossRef] [PubMed]
  23. Substrates were kindly provided by von Ardenne Anlagentechnik.
  24. A. Lasagni, D. Acevedo, C. Barbero, and F. Mücklich, “Advanced design of conductive polymeric arrays with controlled electrical resistance using direct laser interference patterning,” Appl. Phys. A Mater. Sci. Process.91, 369–373 (2008). [CrossRef]
  25. A. Lasagni, M. Seyler, C. Holzapfel, W. F. Maier, and F. Mücklich, “Periodical gratings in mixed-oxide films by laser-interference irradiation,” Adv. Mater.17, 2228–2232 (2005). [CrossRef]
  26. L. Müller-Meskamp, Y. H. Kim, T. Roch, S. Hofmann, R. Scholz, S. Eckhardt, K. Leo, and A. F. Lasagni, “Efficiency enhancement of organic solar cells by fabricating periodic surface textures using direct laser interference patterning,” Adv. Mater.24, 906–910 (2012). [CrossRef] [PubMed]
  27. K. Walzer, B. Maennig, M. Pfeiffer, and K. Leo, “Highly efficient organic devices based on electrically doped transport layers,” Chem. Rev.107, 1233–1271 (2007). [CrossRef] [PubMed]
  28. S. Hofmann, M. Thomschke, B. Lüssem, and K. Leo, “Top-emitting organic light-emitting diodes,” Opt. Express19, A1250–A1264 (2011). [CrossRef] [PubMed]
  29. R. Meerheim, M. Furno, S. Hofmann, B. Lüssem, and K. Leo, “Quantification of energy loss mechanisms in organic light-emitting diodes,” Appl. Phys. Lett.97, 253305 (2010). [CrossRef]
  30. Z. Jin, I. Hamberg, and C. G. Granqvist, “Optical properties of sputterdeposited ZnO:Al thin films,” Appl. Phys. Lett.64, 5117 (1988).
  31. Z. Qiao, C. Agashe, and D. Mergel, “Dielectric modeling of transmittance spectra of thin ZnO:Al films,” Thin Solid Films496, 520–525 (2006). [CrossRef]
  32. D. Mergel and Z. Qiao, “Dielectric modelling of optical spectra of thin In2O3: Sn films,” J. Phys. D: Appl. Phys.35, 794–801 (2002). [CrossRef]
  33. A. G. Yarovoy, R. V. de Jongh, and L. P. Ligthart, “Scattering properties of a statistically rough interface inside a multilayered medium,” Radio Sci.35, 455–462 (2000). [CrossRef]
  34. K. A. Neyts, “Simulation of light emission from thin-film microcavities,” J. Opt. Soc. Am. A15, 962–971 (1998). [CrossRef]
  35. T. D. Schmidt, D. S. Setz, M. Flämmich, J. Frischeisen, D. Michaelis, B. C. Krummacher, N. Danz, and W. Brütting, “Evidence for non-isotropic emitter orientation in a red phosphorescent organic light-emitting diode and its implications for determining the emitter’s radiative quantum efficiency,” Appl. Phys. Lett.99, 163302 (2011). [CrossRef]
  36. S.-Y. Kim and J.-J. Kim, “Outcoupling efficiency of organic light emitting diodes and the effect of ITO thickness,” Org. Electron.11, 1010–1015 (2010). [CrossRef]
  37. T. J. Davis, “Surface plasmon modes in multi-layer thin films,” Opt. Commun.282, 135–140 (2009). [CrossRef]
  38. H. Rigneault, F. Lemarchand, and A. Sentenac, “Dipole radiation into grating structures,” J. Opt. Soc. Am. A17, 1048–1059 (2000). [CrossRef]
  39. P. T. Worthing and W. L. Barnes, “Efficient coupling of surface plasmon polaritons to radiation using a bi-grating,” Appl. Phys. Lett.79, 3035–3038 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited