OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 14 — Jul. 15, 2013
  • pp: 16370–16380

Directional emission of dielectric disks with a finite scatterer in the THz regime

S. Preu, S. I. Schmid, F. Sedlmeir, J. Evers, and H. G. L. Schwefel  »View Author Affiliations


Optics Express, Vol. 21, Issue 14, pp. 16370-16380 (2013)
http://dx.doi.org/10.1364/OE.21.016370


View Full Text Article

Enhanced HTML    Acrobat PDF (8453 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In the Terahertz (THz) domain, we investigate both numerically and experimentally the directional emission of whispering gallery mode resonators that are perturbed by a small scatterer in the vicinity of the resonators rim. We determine quality factor degradation, the modal structure and the emission direction for various geometries. We find that scatterers do allow for directional emission without destroying the resonator’s quality factor. This finding allows for new geometries and outcoupling scenarios for active whispering gallery mode structures such as quantum cascade lasers and passive resonators such as evanescent sensors. The experimental results agree well with finite difference time domain simulations.

© 2013 OSA

OCIS Codes
(230.5750) Optical devices : Resonators
(140.3945) Lasers and laser optics : Microcavities
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Optical Devices

History
Original Manuscript: March 6, 2013
Revised Manuscript: May 10, 2013
Manuscript Accepted: May 13, 2013
Published: July 2, 2013

Citation
S. Preu, S. I. Schmid, F. Sedlmeir, J. Evers, and H. G. L. Schwefel, "Directional emission of dielectric disks with a finite scatterer in the THz regime," Opt. Express 21, 16370-16380 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-14-16370


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science280, 1556–1564 (1998). [CrossRef] [PubMed]
  2. L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, “Vertically emitting microdisk lasers,” Nat. Photonics3, 46–49 (2009). [CrossRef]
  3. Q. J. Wang, C. Yan, N. Yu, J. Unterhinninghofen, J. Wiersig, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Whispering-gallery mode resonators for highly unidirectional laser action,” Proc. Natl. Acad. Sci. U.S.A. (2010).
  4. S.-K. Kim, S.-H. Kim, G.-H. Kim, H.-G. Park, D.-J. Shin, and Y.-H. Lee, “Highly directional emission from few-micron-size elliptical microdisks,” Appl. Phys. Lett.84, 861–863 (2004). [CrossRef]
  5. H. G. L. Schwefel, N. B. Rex, H. E. Türeci, R. K. Chang, A. D. Stone, T. Ben-Messaoud, and J. Zyss, “Dramatic shape sensitivity of directional emission patterns from similarly deformed cylindrical polymer lasers,” J. Opt. Soc. Am. B21, 923–934 (2004). [CrossRef]
  6. Q. Song, L. Ge, B. Redding, and H. Cao, “Channeling chaotic rays into waveguides for efficient collection of microcavity emission,” Phys. Rev. Lett.108, 243902 (2012). [CrossRef] [PubMed]
  7. X.-F. Jiang, Y.-F. Xiao, C.-L. Zou, L. He, C.-H. Dong, B.-B. Li, Y. Li, F.-W. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater.24, OP260–OP264 (2012). [CrossRef] [PubMed]
  8. A. A. Danylov, J. Waldman, T. M. Goyette, A. J. Gatesman, R. H. Giles, K. J. Linden, W. R. Neal, W. E. Nixon, M. C. Wanke, and J. L. Reno, “Transformation of the multimode terahertz quantum cascade laser beam into a gaussian, using a hollow dielectric waveguide,” Appl. Opt.46, 5051–5055 (2007). [CrossRef] [PubMed]
  9. M. Hentschel, T.-Y. Kwon, M. A. Belkin, R. Audet, and F. Capasso, “Angular emission characteristics of quantum cascade spiral microlasers,” Opt. Express17, 10335–10343 (2009). [CrossRef] [PubMed]
  10. Y.-C. Liu, Y.-F. Xiao, X.-F. Jiang, B.-B. Li, Y. Li, and Q. Gong, “Cavity-QED treatment of scattering-induced free-space excitation and collection in high-Q whispering-gallery microcavities,” Phys. Rev. A85, 013843 (2012). [CrossRef]
  11. J. Wiersig and M. Hentschel, “Unidirectional light emission from high-Q modes in optical microcavities,” Phys. Rev. A73, 031802 (2006). [CrossRef]
  12. C. P. Dettmann, G. V. Morozov, M. Sieber, and H. Waalkens, “Unidirectional emission from circular dielectric microresonators with a point scatterer,” Phys. Rev. A80, 063813 (2009). [CrossRef]
  13. J. T. Rubin and L. Deych, “Ab initio theory of defect scattering in spherical whispering-gallery-mode resonators,” Phys. Rev. A81, 053827 (2010). [CrossRef]
  14. R. F. M. Hales, M. Sieber, and H. Waalkens, “Trace formula for a dielectric microdisk with a point scatterer,” J. Phys. A44, 155305 (2011). [CrossRef]
  15. S. A. Backes, J. R. A. Cleaver, A. P. Heberle, J. J. Baumberg, and K. Köhler, “Threshold reduction in pierced microdisk lasers,” Appl. Phys. Lett.74, 176–178 (1999). [CrossRef]
  16. D. C. Aveline, L. Baumgartel, B. Ahn, and N. Yu, “Focused ion beam engineered whispering gallery mode resonators with open cavity structure,” Opt. Express20, 18091–18096 (2012). [CrossRef] [PubMed]
  17. X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. OBrien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science338, 363–366 (2012). [CrossRef] [PubMed]
  18. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nature Methods5, 591–596 (2008). [CrossRef] [PubMed]
  19. H.-P. Loock, J. A. Barnes, G. Gagliardi, R. Li, R. D. Oleschuk, and H. Wächter, “Absorption detection using optical waveguide cavities,” Can. J. Chemistry88, 401–410 (2010). [CrossRef]
  20. E. N. Shaforost, N. Klein, S. A. Vitusevich, A. Offenhusser, and A. A. Barannik, “Nanoliter liquid characterization by open whispering-gallery mode dielectric resonators at millimeter wave frequencies,” J. Appl. Phys.104, 074111 (2008). [CrossRef]
  21. S. Preu, H. G. L. Schwefel, S. Malzer, G. H. Döhler, L. J. Wang, M. Hanson, J. D. Zimmerman, and A. C. Gossard, “Coupled whispering gallery mode resonators in the terahertz frequency range,” Opt. Express16, 7336–7343 (2008). [CrossRef] [PubMed]
  22. S. Preu, F. H. Renner, S. Malzer, G. H. Döhler, L. J. Wang, M. Hanson, A. C. Gossard, T. L. J. Wilkinson, and E. R. Brown, “Efficient terahertz emission from ballistic transport enhanced n-i-p-n-i-p superlattice photomixers,” Appl. Phys. Lett.90, 212115 (2007). [CrossRef]
  23. S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys.109, 061301 (2011). [CrossRef]
  24. S. Preu, S. Kim, R. Verma, P. G. Burke, M. S. Sherwin, and A. C. Gossard, “An improved model for non-resonant terahertz detection in field-effect transistors,” J. Appl. Phys.111, 024502 (2012). [CrossRef]
  25. S. Preu, H. Lu, M. S. Sherwin, and A. C. Gossard, “Detection of nanosecond-scale, high power THz pulses with a field effect transistor,” Rev. Sci. Instrum.83(2012). [CrossRef] [PubMed]
  26. I. Microtech Instruments, “ http://www.mtinstruments.com/thzresources/thzpropertiesofmaterials.pdf ,”.
  27. H. E. Türeci, H. G. L. Schwefel, P. Jacquod, and A. D. Stone, “Modes of wave-chaotic dielectric resonators,” in “Progress in Optics” 47E. Wolf, ed. (Elsevier Science Bv, Amsterdam), pp. 75–137 (2005). [CrossRef]
  28. J. Wiersig, “Boundary element method for resonances in dielectric microcavities,” J. Opt. A5, 53–60 (2003). [CrossRef]
  29. H. E. Türeci and H. G. L. Schwefel, “An efficient Fredholm method for the calculation of highly excited states of billiards,” J. Phys. A40, 13869–13882 (2007). [CrossRef]
  30. C.-L. Zou, H. G. L. Schwefel, F.-W. Sun, Z.-F. Han, and G.-C. Guo, “Quick root searching method for resonances of dielectric optical microcavities with the boundary element method,” Opt. Express19, 15669–15678 (2011). [CrossRef] [PubMed]
  31. H. G. L. Schwefel and C. G. Poulton, “An improved method for calculating resonances of multiple dielectric disks arbitrarily positioned in the plane,” Opt. Express17, 13178–13186 (2009). [CrossRef] [PubMed]
  32. S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, “FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,” J. Lightwave Technol.15, 2154–2165 (1997). [CrossRef]
  33. A. Taflove and S. C. Hagness, Computational electrodynamics: the finite-difference time-domain method,3rd ed. (Artech HouseBoston, 2005).
  34. S. I. Schmid, K. Xia, and J. Evers, “Pathway interference in a loop array of three coupled microresonators,” Phys. Rev. A84, 013808 (2011). [CrossRef]
  35. J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. of Comput. Phys.114, 185–200 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Multimedia

Multimedia FilesRecommended Software
» Media 1: MP4 (1480 KB)     
» Media 2: MP4 (1513 KB)     
» Media 3: MP4 (1439 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited