OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 14 — Jul. 15, 2013
  • pp: 16424–16430

Second harmonic generation in a low-loss orientation-patterned GaAs waveguide

K. A. Fedorova, A. D. McRobbie, G. S. Sokolovskii, P. G. Schunemann, and E. U. Rafailov  »View Author Affiliations


Optics Express, Vol. 21, Issue 14, pp. 16424-16430 (2013)
http://dx.doi.org/10.1364/OE.21.016424


View Full Text Article

Enhanced HTML    Acrobat PDF (2298 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The technology of low-loss orientation-patterned gallium arsenide (OP-GaAs) waveguided crystals was developed and realized by reduction of diffraction scattering on the waveguide pattern. The propagation losses in the OP-GaAs waveguide were estimated to be as low as 2.1 dB/cm, thus demonstrating the efficient second harmonic generation at 1621 nm under an external pumping.

© 2013 OSA

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.2620) Nonlinear optics : Harmonic generation and mixing
(230.7370) Optical devices : Waveguides

ToC Category:
Nonlinear Optics

History
Original Manuscript: April 16, 2013
Revised Manuscript: May 31, 2013
Manuscript Accepted: June 3, 2013
Published: July 2, 2013

Citation
K. A. Fedorova, A. D. McRobbie, G. S. Sokolovskii, P. G. Schunemann, and E. U. Rafailov, "Second harmonic generation in a low-loss orientation-patterned GaAs waveguide," Opt. Express 21, 16424-16430 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-14-16424


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Wang and P. Sahay, “Breath analysis using laser spectroscopic techniques: Breath biomarkers, spectral fingerprints, and detection limits,” Sensors (Basel)9(10), 8230–8262 (2009). [CrossRef] [PubMed]
  2. M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express16(4), 2387–2397 (2008). [CrossRef] [PubMed]
  3. M. A. Mackanos, D. M. Simanovskii, K. E. Schriver, M. Hutson, C. H. Contag, J. A. Kozub, and E. Duco Jansen, “Pulse-duration-dependent mid-infrared laser ablation for biological applications,” IEEE J. Sel. Top. Quantum Electron.18(4), 1514–1522 (2012). [CrossRef]
  4. C. Eliasson, N. A. Macleod, and P. Matousek, “Noninvasive detection of concealed liquid explosives using Raman spectroscopy,” Anal. Chem.79(21), 8185–8189 (2007). [CrossRef] [PubMed]
  5. A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol.25(8), 083001 (2010). [CrossRef]
  6. T. Kruczek, K. A. Fedorova, G. S. Sokolovskii, R. Teissier, A. N. Baranov, and E. U. Rafailov, “InAs/AlSb widely tunable external cavity quantum cascade laser around 3.2 μm,” Appl. Phys. Lett.102(1), 011124 (2013). [CrossRef]
  7. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992). [CrossRef]
  8. D. V. Petrov, “Nonlinear phase shift by cascaded quasi-phase-matched second harmonic generation,” Opt. Commun.131(1-3), 102–106 (1996). [CrossRef]
  9. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B14(9), 2268–2294 (1997). [CrossRef]
  10. F. A. Katsriku, B. M. A. Rahman, and K. T. V. Grattan, “Numerical modeling of second harmonic generation in optical waveguides using the finite element method,” IEEE J. Quantum Electron.36, 282–289 (2000). [CrossRef]
  11. L. Gordon, G. L. Woods, R. C. Eckardt, R. R. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Diffusion-bonded stacked GaAs for quasiphase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett.29(22), 1942–1944 (1993). [CrossRef]
  12. S. J. B. Yoo, R. Bhat, C. Caneau, and M. A. Koza, “Quasi-phase-matched second-harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by wafer-bonding,” Appl. Phys. Lett.66(25), 3410–3412 (1995). [CrossRef]
  13. S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett.68(19), 2609–2611 (1996). [CrossRef]
  14. E. U. Rafailov, P. Loza-Alvarez, C. T. A. Brown, W. Sibbett, R. M. De La Rue, P. Millar, D. A. Yanson, J. S. Roberts, and P. A. Houston, “Second-harmonic generation from a first-order quasi-phase-matched GaAs/AlGaAs waveguide crystal,” Opt. Lett.26(24), 1984–1986 (2001). [CrossRef] [PubMed]
  15. D. Artigas, E. U. Rafailov, P. Loza-Alvarez, and W. Sibbett, “Periodically switched nonlinear structured for frequency conversion: theory and experimental demonstration,” IEEE J. Quantum Electron.40(8), 1122–1130 (2004). [CrossRef]
  16. S. Koh, T. Kondo, T. Ishiwada, C. Iwamoto, H. Ichinose, H. Yaguichi, T. Usami, Y. Shiraki, and R. Ito, “Sublattice Reversal in GaAs/Si/GaAs (100) Heterostructures by Molecular Beam Epitaxy,” Jpn. J. Appl. Phys.37(Part 2, No. 12B), L1493–L1496 (1998). [CrossRef]
  17. C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. S. Harris., “MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy,” J. Cryst. Growth201-202, 187–193 (1999). [CrossRef]
  18. T. Kondo, S. Koh, and R. Ito, “Sublattice reversal epitaxy: a novel technique for fabricating domain-inverted compound semiconductor structures,” Sci. Technol. Mater.1(3), 173–179 (2000). [CrossRef]
  19. P. Schunemann, “CdSiP2 and OPGaAs: New nonlinear crystals for the mid-infrared,” in Advances in Optical Materials, OSA Technical Digest (Optical Society of America, 2011), paper AIFA1, (2011).
  20. M. B. Oron, S. Pearl, P. Blau, and S. Shusterman, “Efficient second-harmonic generation and modal dispersion effects in orientation-patterned GaAs waveguides,” Opt. Lett.35(16), 2678–2680 (2010). [CrossRef] [PubMed]
  21. S. Strite, D. Biswas, N. S. Kumar, M. Fradkin, and H. Morkoc, “Antiphase domain free growth of GaAs on Ge in GaAs/Ge/GaAs heterostructures,” Appl. Phys. Lett.56(3), 244–246 (1990). [CrossRef]
  22. M. B. Oron, S. Shusterman, and P. Blau, “Periodically oriented GaAs templates and waveguide structures for frequency conversion,” Proc. SPIE6875, 68750F, 68750F-12 (2008). [CrossRef]
  23. J. Ota, W. Narita, I. Ohta, T. Matsushita, and T. Kondo, “Fabrication of periodically-inverted AlGaAs waveguides for quaisi-phase-matched wavelength conversion at 1.55 µm,” Jpn. J. Appl. Phys.48(4), 04C110 (2009). [CrossRef]
  24. D. A. Yanson, E. U. Rafailov, G. S. Sokolovskii, V. I. Kuchinskii, A. C. Bryce, J. H. Marsh, and W. Sibbett, “Self-focussed distributed Bragg reflector laser diodes,” J. Appl. Phys.95(3), 1502–1509 (2004). [CrossRef]
  25. V. V. Dudelev, G. S. Sokolovskii, S. N. Losev, A. G. Deryagin, V. I. Kuchinskii, S. A. Nikishin, M. Holtz, E. U. Rafailov, and W. Sibbett, “Phase effects in broad-area heterolasers with curved grooves of distributed feedback grating,” Tech. Phys. Lett.33, 292–293 (2007). [CrossRef]
  26. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited