OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 14 — Jul. 15, 2013
  • pp: 16431–16443

Probing timescales during back side ablation of Molybdenum thin films with optical and electrical measurement techniques

D. Bartl, M. Ametowobla, F. Schmid, A. Letsch, M. Hafner, S. Nolte, and A. Tünnermann  »View Author Affiliations

Optics Express, Vol. 21, Issue 14, pp. 16431-16443 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (6453 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this study we present a new measurement technique to investigate the timescales of back side ablation of conductive films, using Molybdenum as an application example from photovoltaics. With ultrashort laser pulses at fluences below 0.6 J/cm2, we ablate the Mo film in the shape of a fully intact Mo ’disc’ from a transparent substrate. By monitoring the time-dependent current flow across a specifically developed test structure, we determine the time required for the lift-off of the disc. This value decreases with increasing laser fluence down to a minimum of 21 ± 2 ns. Furthermore, we record trajectories of the discs using a shadowgraphic setup. Ablated discs escape with a maximum velocity of 150 ± 5 m/s whereas droplets of Mo forming at the center of the disc can reach velocities up to 710 ± 11 m/s.

© 2013 OSA

OCIS Codes
(310.3840) Thin films : Materials and process characterization
(320.7090) Ultrafast optics : Ultrafast lasers
(350.3390) Other areas of optics : Laser materials processing
(350.6050) Other areas of optics : Solar energy

ToC Category:
Thin Films

Original Manuscript: April 22, 2013
Revised Manuscript: May 28, 2013
Manuscript Accepted: May 28, 2013
Published: July 2, 2013

D. Bartl, M. Ametowobla, F. Schmid, A. Letsch, M. Hafner, S. Nolte, and A. Tünnermann, "Probing timescales during back side ablation of Molybdenum thin films with optical and electrical measurement techniques," Opt. Express 21, 16431-16443 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. Schimpf, J. Limpert, and A. Tünnermann, “Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system,” Opt. Lett.32, 3495–3497 (2007). [CrossRef] [PubMed]
  2. J. Kleinbauer, D. Eckert, S. Weiler, and D. H. Sutter, “80W ultrafast CPA-free disk laser,” Proc. SPIE6871, 68711B (2008). [CrossRef]
  3. P. Russbueldt, T. Mans, G. Rotarius, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “400W Yb:YAG innoslab fs-amplifier,” Opt. Express17, 12230–12245 (2009). [CrossRef] [PubMed]
  4. R. Knappe, T. Herrmann, B. Heinrich, and A. Nebel, “Novel picosecond lasers for fast micro-machining,” in “Proceedings of the Third International WLT-Conference on Lasers in Manufacturing, LIM 2005”, 723–728 (2005).
  5. B. Chichkov, C. Momma, S. Nolte, F. Von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A: Mater. Sci. Process.63, 109–115 (1996). [CrossRef]
  6. S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B14, 2716–2722 (1997). [CrossRef]
  7. D. Breitling, A. Ruf, and F. Dausinger, “Fundamental aspects in machining of metals with short and ultrashort laser pulses,” Proc. SPIE5339, 49–63 (2004). [CrossRef]
  8. A. D. Compaan, I. Matulionis, and S. Nakade, “Laser scribing of polycrystalline thin films,” Opt. Laser Eng.34, 15–45 (2000). [CrossRef]
  9. D. Ruthe, K. Zimmer, and T. Höche, “Etching of CuInSe2thin films–comparison of femtosecond and picosecond laser ablation,” Appl. Surf. Sci.247, 447–452 (2005). [CrossRef]
  10. J. Hermann, M. Benfarah, S. Bruneau, E. Axente, G. Coustillier, T. Itina, J.-F. Guillemoles, and P. Alloncle, “Comparative investigation of solar cell thin film processing using nanosecond and femtosecond lasers,” J. Phys. D: Appl. Phys.39, 453 (2006). [CrossRef]
  11. S. Zoppel, H. Huber, and G. Reider, “Selective ablation of thin Mo and TCO films with femtosecond laser pulses for structuring thin film solar cells,” Appl. Phys. A: Mater. Sci. Process.89, 161–163 (2007). [CrossRef]
  12. H. P. Huber, F. Herrnberger, S. Kery, and S. Zoppel, “Selective structuring of thin-film solar cells by ultrafast laser ablation,” Proc. SPIE6881, 688117 (2008). [CrossRef]
  13. H. P. Huber, M. Englmaier, C. Hellwig, A. Heiss, T. Kuznicki, M. Kemnitzer, H. Vogt, R. Brenning, and J. Palm, “High speed structuring of CIS thin-film solar cells with picosecond laser ablation,” Proc. SPIE7203, 72030R (2009). [CrossRef]
  14. G. Heise, M. Englmaier, C. Hellwig, T. Kuznicki, S. Sarrach, and H. P. Huber, “Laser ablation of thin molybdenum films on transparent substrates at low fluences,” Appl. Phys. A: Mater. Sci. Process.102, 173–178 (2011). [CrossRef]
  15. T. Dalibor, S. Jost, H. Vogt, A. Heiß, S. Visbeck, T. Happ, J. Palm, A. Avellán, T. Niesen, and F. Karg, “Towards module efficiencies of 16% with an improved CIGSSe device design,” in “Proceedings of the 26th EUPVSEC”, 2407–2411 (2011).
  16. A. B. Bullock and P. R. Bolton, “Laser-induced back ablation of aluminum thin films using picosecond laser pulses,” J. Appl. Phys.85, 460–465 (1999). [CrossRef]
  17. F. J. Mayer and G. E. Busch, “Plasma production by laser-driven explosively heated thin metal films,” J. Appl. Phys.57, 827–829 (1985). [CrossRef]
  18. A. B. Bullock, P. R. Bolton, and F. J. Mayer, “Time-integrated reflectivity of laser-induced back-ablated aluminum thin film targets,” J. Appl. Phys.82, 1828–1831 (1997). [CrossRef]
  19. S. I. Ashitkov, N. A. Inogamov, P. S. Komarov, V. V. Zhakhovsky, I. I. Oleynik, M. B. Agranat, G. I. Kanel, and V. E. Fortov, “Strength of metals in liquid and solid states at extremely high tension produced by femtosecond laser heating,” AIP Conf. Proc.1464, 120–125 (2012). [CrossRef]
  20. S. Ashitkov, M. Agranat, G. Kanel’, P. Komarov, and V. Fortov, “Behavior of aluminum near an ultimate theoretical strength in experiments with femtosecond laser pulses,” JETP Lett.92, 516–520 (2010). [CrossRef]
  21. V. Schultze and M. Wagner, “Blow-off of aluminium films,” Appl. Phys. A: Mater. Sci. Process.53, 241–248 (1991). [CrossRef]
  22. Y. Nakata and T. Okada, “Time-resolved microscopic imaging of the laser-induced forward transfer process,” Appl. Phys. A: Mater. Sci. Process.69, S275–S278 (1999). [CrossRef]
  23. R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Shadowgraphy investigation of laser-induced forward transfer: Front side and back side ablation of the triazene polymer sacrificial layer,” Appl. Surf. Sci.255, 5430–5434 (2009). [CrossRef]
  24. K. S. Kaur, R. Fardel, T. C. May-Smith, M. Nagel, D. P. Banks, C. Grivas, T. Lippert, and R. W. Eason, “Shadowgraphic studies of triazene assisted laser-induced forward transfer of ceramic thin films,” J. Appl. Phys.105, 113119 (2009). [CrossRef]
  25. D. G. Papazoglou, A. Karaiskou, I. Zergioti, and C. Fotakis, “Shadowgraphic imaging of the sub-ps laser-induced forward transfer process,” Appl. Phys. Lett.81, 1594–1596 (2002). [CrossRef]
  26. A. Kuznetsov, C. Unger, J. Koch, and B. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys. A: Mater. Sci. Process.106, 479–487 (2012). [CrossRef]
  27. M. Domke, G. Heise, I. Richter, S. Sarrach, and H. P. Huber, “Pump-probe investigations on the laser ablation of CIS thin film solar cells,” Phys. Procedia12, 399–406 (2011). [CrossRef]
  28. M. Domke, S. Rapp, M. Schmidt, and H. P. Huber, “Ultrafast pump-probe microscopy with high temporal dynamic range,” Opt. Express20, 10330–10338 (2012). [CrossRef] [PubMed]
  29. M. Domke, S. Rapp, and H. Huber, “Ultra-fast movies resolve ultra-short pulse laser ablation and bump formation on thin molybdenum films,” Phys. Procedia39, 717–725 (2012). [CrossRef]
  30. M. Domke, S. Rapp, M. Schmidt, and H. Huber, “Ultra-fast movies of thin-film laser ablation,” Appl. Phys. A: Mater. Sci. Process.109, 409–420 (2012). [CrossRef]
  31. D. Bartl, A. Michalowski, M. Hafner, A. Letsch, S. Nolte, and A. Tünnermann, “Time-resolved study of back side ablated molybdenum thin films by ultrashort laser pulses,” Appl. Phys. A: Mater. Sci. Process.110, 227–233 (2013). [CrossRef]
  32. J. M. Liu, “Simple technique for measurements of pulsed gaussian-beam spot sizes,” Opt. Lett.7, 196–198 (1982). [CrossRef] [PubMed]
  33. G. Heise, M. Domke, J. Konrad, S. Sarrach, J. Sotrop, and H. P. Huber, “Laser lift-off initiated by direct induced ablation of different metal thin films with ultra-short laser pulses,” J. Phys. D: Appl. Phys.45, 315303 (2012). [CrossRef]
  34. A. Michalowski, D. Walter, P. Berger, and F. Dausinger, “Diagnostics of drilling process using ultrashort laser pulses,” in “Proceedings of the Fourth International WLT-Conference on Lasers in Manufacturing, LIM 2007”, 563–567 (2007).
  35. D. P. Brunco, J. A. Kittl, C. E. Otis, P. M. Goodwin, M. O. Thompson, and M. J. Aziz, “Time-resolved temperature measurements during pulsed laser irradiation using thin film metal thermometers,” Rev. Sci. Instrum.64, 2615–2623 (1993). [CrossRef]
  36. R. A. Synowicki, B. D. Johs, and A. C. Martin, “Optical properties of soda-lime float glass from spectroscopic ellipsometry,” Thin Solid Films519, 2907–2913 (2011). [CrossRef]
  37. D. W. Lynch and W. R. Hunter, Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic Press Inc., 1985), chap. VI, pp. 303–313.
  38. K. Maglic, N. Perovic, and G. Vukovic, “Specific heat and electric resistivity of molybdenum between 400 and 2500 K,” High Temp. - High Pressures29, 97–102 (1997). [CrossRef]
  39. R. S. Hixson and M. A. Winkler, “Thermophysical properties of molybdenum and rhenium,” Int. J. Thermophys.13, 477–487 (1992). [CrossRef]
  40. T. Hüpf, C. Cagran, G. Lohöfer, and G. Pottlacher, “Electrical resistivity of high melting metals up into the liquid phase (V, Nb, Ta, Mo, W),” J Phys.: Conf. Ser.98, 062002 (2008). [CrossRef]
  41. S. Taluts, V. Zinov’yev, V. Polev, and S. Il’inykh, “Thermal diffusivity and conductivity of molybdenum in solid and liquid states.” Phys. Met. Metall.58, 191–194 (1984).
  42. A. Kurichenko, S. Taluts, I. Korshunov, A. Ivlieu, and V. Zinov’ev, “Thermal diffusivity and thermal conductivity of molybdenum and molybdenum-titanium bimetal at high temperatures,” High Temp. - High Pressures21, 437–439 (1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited